Most - Often - Needed 1946 RADIO DIAGRAMS

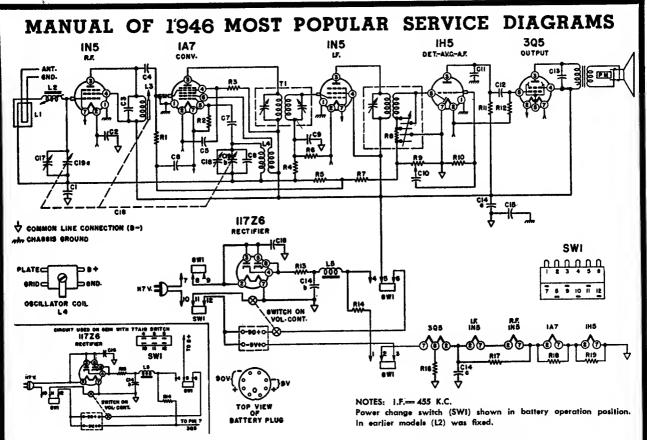
and Servicing Information

Compiled by

M. N. BEITMAN

Supreme Publications

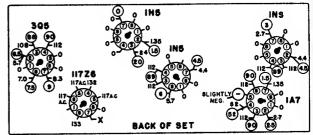
PUBLISHERS OF RADIO BOOKS AND DIAGRAM MANUALS


MANUAL	OF 1946	MOST POP	ULAR SE	RVICE DIAGE	AMS
		IND	EX		
Admiral Ra		Crosley (cont'd)	Espey (conti	nued)
3A1	7	56TW-L	26-27	642	42
4A1	8-9	66CA	28- 29	651	43
5B 1	10-11	66CP	28-29	652	43
6Al	12-13	66CQ	28-29	653	43
6EI 6EIN	6	66TA	30-31	6511	43
OFIN	6	66TC 66TW	30-31	6514 6516	43
Airline		0014	30-31	6520	43 43
see Mont	COMPRT.	Detrola		6521	43 43
	Bounds à		ernation	6522	43
Allied Rad	io Corp.	500 2110		6531	43
5A-150	16	DeWald Rad	lio Mfg.	6532	43
5A-152	16	A500	ີ້32	6533	43
5A-154	16	A501	32		
5A-163	16	A502	3 2	Fada Radio	
6A-122	14	A503	32	605	44
6A-127	15	A504	33	609	44
Arvin		A505	33	652	45
see Nobl	itt-Sp.	A602 A603	32 32	1000	4 6
		N 003	しん	Farnswor th	
Automatic	Radio	Emerson Ra	dio	ET-064	47
601	17	501 to 5		ET-065	47
602	17	505	35	ET-066	47
611	17	506	36	C-152	4 8
612X 640	18	507	37-38	C-153	4 8
660	17 18	508	39	C-158	47
670	18	509	37-38	C-159	47
0.0	10	510	34	C-162	48
Belmont Ra	dio	518	37-38	EC-260 EK-262	48 4 8
4B17	19	519 520	34 34	EK-263	4 8
6D111	20	522	34 37	EK-264	48
		523	35	EK-265	48
Continenta		120000	34		
see Admi	ral	120002	35	Feiler Engine	ering
Coronado		120003	36	TS-2	157
43-8351	50	120004	37		
43-8352	50	120005	37-38	Galvin Mfg. (
	00	120008	39	HS-2 5A1	81 77
Crosley Con	rp.	120029	34	5A5	79
46FA	21	120030 819003	34 40 -4 1	HS-6	77
46FB	21		anger 40	HS-8	78
56FA	22-23		-	AS-13	80
56FB	22-23	Espey Mfg.		AS-14	82
56 TA 56 T C	24-25	FJ-91	42	AS-15	83
56TW	24 -2 5 24 -25	FJ-91A FJ-97	42	HS-15	79
56TA-L	24 - 25 26-27	621	43 42	45B12	78
56TC-L	26-27	641	42	65X11	81
	-			65X12	81
COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS					

÷

4

Galvin (cont	inued)	Knight		Motorola (cont'd)
65X13	81	see Allied R	oina	505	82
405	80			605	83
	82	Lear, Inc.		000	00
505			66	National ('o
605	83	561			84-85
a 17 al.		562	66	NC-46	84-85
Gamble-Skogr		563	66		
43-8351	50			Noblitt-Sp	arks
43- 3 5 2	50	Majestic Radio		RE-200	87
		5A410	69	RE-201	86
Garod Radio		5A430	69	444	87
5A2	51	75433	70	444-A	87
5D	52	78450	70	544	86
6AU1	52	75470	70	544-A	86
UNUL	0.0	4501	69	Jii - A	00
General Elec	atata	4504	69	Alexander Pe	310
			70	Olympic Ra	
100	53	4702		6-501	88
101	53	4703	70	6-502	88
103	53			6-503	88
105	53	John Meck Indu	st.	6-504	88
321	49	RC-5C5	67	6-504-L	88
		RC-5C5-A	67	6-617	89
Hamilton Rad	dio	RC-5C5-B	67		
6-501	88	RC-5C5-C	67	Packard-Be	11 Co.
6-502	88	RC-5C5-CL	68	5FP	90
6-503	88	RC-5C5-DL	68	551	90
6-504	88	10-000-02	00	651	91
6 -504 L	88	Montgomery War	a l	001	27
6-617	89	54BR-1501A	72	R.C.A. Mfg	• Co.
0-011	09	54BR-1502A	72	Q22A	92-93
II. Adman Dad	a Com			Q32	92 -9 3
Hoffman Rad		54BR-1503C	73	CV-42	97
100	54	54BR-1504C	73		
1015	54	54BR-1505A	71	52E	94
102	54	54BR-1506A	71	52HE	94
103	54	54WG-1801A	76	54B1	95
A200	54	54WG-2007A	76	54B1-N	95
A301	54	64BR-1051A	74	54B2	95
A302	54	6 4WG-1804A	75	54B3	95
A401	54			55AU	9 6
		Motorola		55F	97
Howard Radi	o Co.	HS-2	81	55U	96
901	55	5A1	77	56X	9 8
301	00	5A5	79	56X2	98
Internation	al Det.	HS-6	77	56X3	98
554	56-57	HS-8	78	56X5	9 9
568	58	AS-13	80	56X10	99
				56X10	100
571A	60-61	AS-14	82		101-102
571B	60-61	AS-15	83	58AV	
571X	59	HS-15	79	58V	101-102
572	62	45B12	78	59AV1	103-104
576	63	65X11	81	59V1	103-104
579	64	65X12	81	61 -1	98
626A	65	65X13	81	61-2	9 8
626B	65	405	80	61-3	98
4		ILED BY M. N. BI		SUDREME DI	RUCATIONS
	COMP		aa 1 1716 127,		


MANUAL OF 1946	MOST POPULAR SH	ERVICE DIAGRAMS
R.C.A. (continued)	Sonora Radio	Western Auto, cont.
61-5 99	RDU 132	D-2604 160
61 -6 105		D-2610, -11 162
	RX 133	
61-7 105	RY 133	D-2615 161
61-10 99		D-2620 163
RC-507 92-93	Sparks-Withington	D-2661 164
RC-589 95	5-06 134	D-3635 165
RC-594D 105		
RC-604 101-102	Stewart-Warner	Westinghouse Elec.
RC-605 103-104	61T16 135-136	H-122 167
RC-1004E 97	61T16 135-136 61T26 135-136 9000-B 137-138	H-125, H-126 166
RC-1011 98	9000-B 137-138	H-130 167
RC-1017 96	9002-A,B 139-140	Zenith Radio Corp.
RC-1023 99	9002-P,R 139-140	4052 168-169
RC-1023A 100	9005-A, B 141-142	4053 168-169
· · · · · · · · · · · · · · · · · · ·	9007-A 143-144	4K016 168-169
960001-1 106-115	9007-F,G 143-144	
960001-2 106-115	9009-B 145-146	4K035 168-169
960001-3 106-115	9014-E 147-148	5001 170-171
Record Changer		502 172-173
106-115	Stromberg-Carlson	5004 172-173
Sears, Roebuck		5D011 170-171
101.660-1A 116		5D027 170-171
101.662-2B 117	1100 149-150	5R080 172-173
101.662-2D 118	1120 151 -1 52	5R086 172-173
101.800 119		6005 174-175
	Superior Instrum.	6021 176-177
101.801 120	CA-11 157	6022 178-179
132.818 121		6023 180-181
139.150 122	Trav-ler Radio	6040 182-183
	102 153	6D015 174-175
Sentinel Radio	500 154	
1U-284I 123-124	501 154	6D030 174-175
1U-284NA 123-124	600 154	6G001 182-183
1U-284NI 123-124	5002 153	6R060 180-181
1U-284W 123-124	7000 154	6R084 176-177
1U-293I 129	7001 154	6R087 178-179
1U-293 T 129	7003 154	8020 184-186
1U-293W 129	-	8021 187
1U-294I 130-131	7005 154	8 C4O 188-189
1U-294T 130-131		86005 188-189
1U-294W 130-131	Truetone	8H032 184-186
284I 123-124	see Western Auto	8H033 184-186
	Warwick Mfg. Co.	8H050 184-186
		8H051 184-186
		8H052 184-186
284W 123-124	C101 155	9H079 187
285P 125-126	C104 155	9H081 187
IU-285P 125-126	C105 155	
289T 127-128	C10 8 1 56	
2931 129		9H085 187
293T 129	Wells-Gardner	9H088 187
29 3 W 129	37D14-600 158	11021 190-192
2941 130-131		12H090 190-192
294N 130-131	Western Auto	12H091 19 0-1 92
294T 130-131	4B19 16 4	12H092 190-192
	5D116, -120 162	12H093 190-192
Signal Tracers 157	6D110 161	12H094 190-192
—		
COMPILED BY M. N. BEI	TMAN, SUPREME PUBLICA	

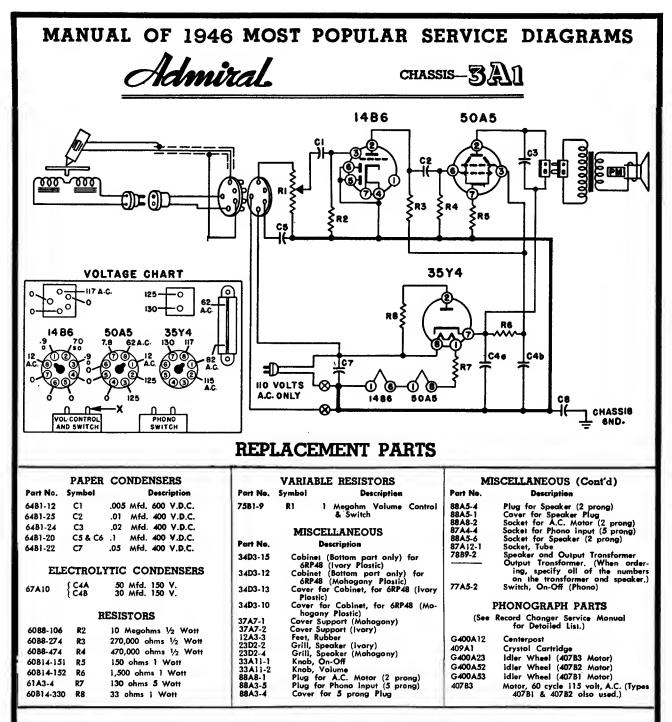
VOLTAGE DATA

- 1. Voltage readings circled (O) are for Battery Opertion.
- 2. All reading made between Tube Socket Terminals and Terminal No. 7 on the 117Z6 (Point (X) on Voltage Chart).
- 3. A.C. Voltages measured on a 117 Volt A.C. line.
- 4. Battery Voltages measured with a fresh battery.
- 5. Dial turned to low frequency end, no signal.
- 6. All Voltages measured with a 1000 ohm per volt meter.

VOLTAGE CHART

RESISTORS

REPLACEMENT PARTS


1

CONDENSERS

		CONDENSERS			MUDIOI OKO	
	Symbol	Description	Part No.	Symbol	Description	Part No.
	C1	.05 Mfd. 200 Volt Paper	64B1-32	R6	4.7 Megohms 1/2 Watt Carbon	60 B2-4 75
	C2	.25 Mfd. 200 Volt Paper	64B1-28	R7	3.3 Megohms 1/2 Watt Carbon	60B2-335
	C3	.00042 Mfd. Mica	65B1-9	R 8	50,000 Ohms 1/2 Watt Carbon	60B8-503
	C4-CI1	.00025 Mfd. Mica	65B5-22	R9	1 Megohm Volume Control	75B1-100
	C3, C6, C9, }			R10	15 Megohms 1/2 Watt Carbon	60B2-156
	C10, C12	.01 Mfd. 400 Volt Paper	64B1-25	R11	1 Megohm 1/2 Watt Carbon	60 B2-1 05
	C7	.00005 Mfd. Mica	65B5-11	R12	2.2 Megohms 1/2 Watt Carbon	60B2-225
	C8	.000015 Mfd. Mica	65B5-3	R13	22 Ohms Wire Wound 1/2 watt	61A2-2
	C13	.002 Mfd. 600 Volt Paper	64B1-9	R14	2,450 Ohms Wire Wound 5 watt	61A3-5
-	C14a	50 Mfd. 150 Volt] Elect.		R16	1,500 Ohms 1/2 Watt Carbon	60B8-152
	C14b	30 Mfd. 150 Volt }	67C7-42	R17	560 Ohms 1/2 Watt Carbon	60B8-561
	Ci4c	100 Mild. 45 Volt J	C440 1	R18	220 Ohms 1/2 Watt Carbon	60B8-221
6	C15	.2 Mfd. 400 Volt Paper	64A2-1 64B1-22	R19	120 Ohms 1/2 Watt Carbon	60B8-121
	C16	.05 Mfd. 400 Volt Paper			OILS & TRANSFORM	PDS
	C17	Antenna Trimmer	66A12-5			LIKO
	C18	Oscillator Trimmer (Part			Coil, Loop Loading,	
IN	C19 { C19a C19b }	Condenser Gang	68B4	L2 -	(fixed) (early)	AA114
	(0.00)				Coil, Loop Loading, (variable) (late)	AA115
		RESISTORS		1	{ Iron Slug for plate coil	71B1-3
			60B8-104	L3	Coil, Plate	70A1-30
	R1 100,0	00 Ohms 1/2 Watt Carbon	60B8-224	L4	Oscillator Coil	69A7
	R2 220,0	000 Ohms 1/2 Watt Carbon	60B8-473	L5	Choke Filter	74A5
	R3 47,00	0 Ohms 1/2 Watt Carbon	60B2-475	TI	1st I.F. Transformer	72B9-2
	R4, R5 4.7	Megohms 1/2 Watt Carbon	0002-473	1		
COMP	ILED B	Y M. N. BEIT	MAN,	SUP	REME PUBLICATI	ons

CHASSIS-6EI-6EIN

VOLTAGE DATA

Voltage measured from socket terminal to point marked "X". Large numerals indicate readings with vacuum tube voltmeter. Small numerals indicate readings with 1000 ohm-per-volt meter.

* *

POWER SUPPLY

Operation on 110-120 volts, 60-cycles, alternating current only. Power consumption: 45 watts.

RECORD CHANGER

Complete service information and parts list are covered by a separate service manual. Check record changer for model number since different record changers may be used from time to time.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

	RESISTORS		•	CONDENSER:	5
SYMBOL	OHMS	WATTS	SYMBOL	CAPACITY	VOLTS
R1 R2 R3 R4 R5 R6 R7 R8	1,000,000 10,000,000 270,000 470,000 150 1,500 130 33	V.C. ¹ / ₂ ¹ / ₂ 1 1 5 1	C1 C2 C3 C4a C4b C5 C6 C7	.005 Mfd. .01 Mfd. .02 Mfd. 50. Mfd. 30. Mfd. .1 Mfd. .1 Mfd. .05 Mfd.	600 400 150 150 400 400 400

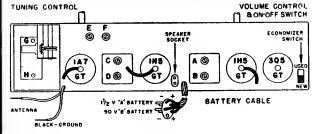
ALIGNMENT PROCEDURE

1. IMPORTANT—Check to see that dial pointer reaches each end of dial scale when Station Selector Control is turned from one end to the other.

2. Volume control-Maximum for all adjustments.

Connect radio chassis to ground post of signal generator with a short heavy lead.
 Connect output meter across voice coil of speaker.

5. Connect dummy antenna value in series with generator, output lead, when needed (see below).


6. Allow chassis and signal generator to "heat up" for several minutes.

7. Use lowest Output setting of Signal Generator capable of producing adequate Output Meter indication and then proceed in the following sequence.

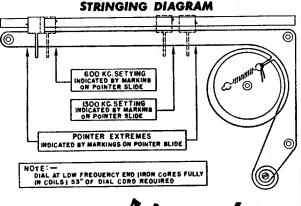
	SIGNAL GI	ENERATOR	Connection	Receiver	Trimmers Adjusted	Trimmer	Type of
BAND	Frenquency Setting	Dummy Antenna	to Radio	Dial Setting	(In Order Shown)	Function	Adjustment
1.F.	455 KC.	.1 mfd.	Grid of 1A7 (Cap)	High Frequency end of dial	C-D—2nd I.F.	Output I.F.	Adjust to maximum output
I.F.	455 KC.	.1 mfd.	Grid of 1A7 (Cap)	High Frequency end of dial	A-B—1st I.F.	Input I.F.	Adjust to maximum output
Broad- cast	1630 KC.	.00025 mfd. Mica	Antenna Lead	High Frequency end of dial	E-(See note below) F-(See note below)	Oscillator Antenna	Adjust to maximum output
Broad- cast	1300 KC.	.00025 mfd. Mica	Antenna Lea d	1300 KC.	G H	Oscillator Antenna	Adjust to maximum output

NOTE: Before adjusting trimmers "E" and "F," make sure that each iron core is $1\frac{1}{4}$ " or more outside of its coil form. If necessary, turn adjustments "G" and "H" to accomplish this.

TUBE AND TRIMMER LOCATION

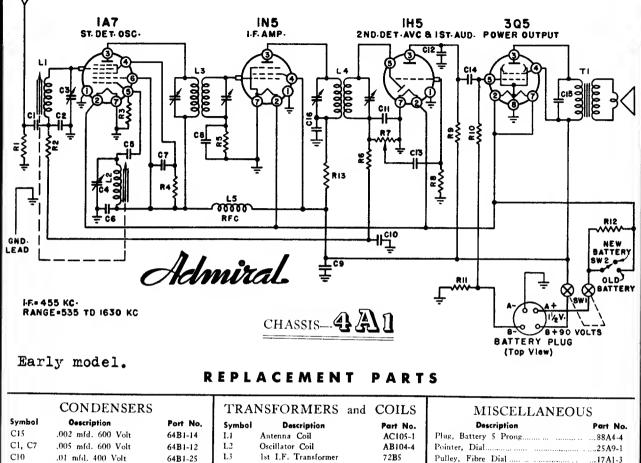
CIRCUIT

Battery operated 4 Tube Superheterodyne with Single Tuning Range 535 KC. to 1630 KC. Covers standard broadcast bond, using antenna and ground. Permeability tuning on Ant. and Osc. circuits. 1.F. 455 KC.


POWER SUPPLY

Single unit "AB" battery pock. 90 volt "B" 1½ volt "A." Plug in connection. Use Ensign AB48, Burgess 17G-D60, Eveready 748, General 60DL-11L, Ray-O-Vac AB-82, or Bond 0528 Battery or Equivalent.

ECONOMIZER SWITCH


The battery economizer switch is located on the top of the chassis, right side.

Always have this Economizer Switch in the "NEW" battery position when first placing radio in operation or when installing a new battery.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

-CHASSIS

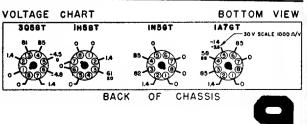
C15	.002 mfd. 600 Volt	64B1-14
C1, C7	.005 mfd. 600 Volt	64B1-12
C10	.01 mfd. 400 Volt	64 B 1-25
C5	.05 mfd. 200 Volt	64B1-32
C11. C12	.0001 mfd.	65 B 7-17
C2, C6	.00025 mfd.	65B7-22
C8	.0008 mfd.	64B5-31
C9	4. mfd. 150 Volt	67A4-2
C3, C4	Dual trimmer	66 A9-1
C13, C16	.01 mfd, 400 Volt	64B1-25

RESISTORS

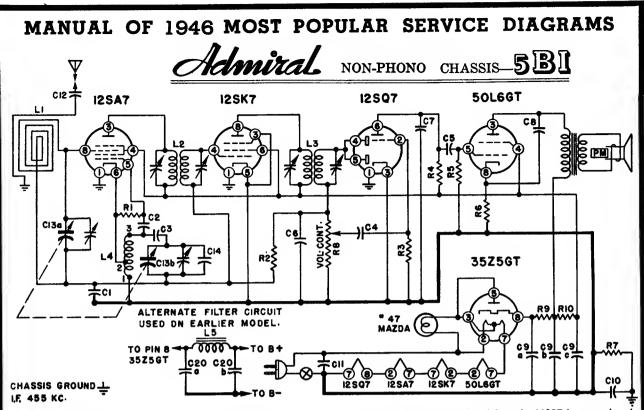
R12	.75 ohm ¼ w (wire)	61A2-1
RH	390. ohm 1/4 w	60B2-301
R13	2200 ohm ¼ w	60B2-222
RI	15,000 ohm ½ w	60B8-153
R4	33,000 ohm 1/2 w	60 B 8-333
R3	220,000 ohm 1/2 w	60B8-224
R2	470,000 ohm ¼ w	60B2-474
R9, R10	1,000.000 ohm 1/4 w	60B2-105
R 6	2,200,000 ohm 1/4 w	60B2-225
R5, R8	4,700,000 ohm 1/4 w	60 B 2-475

AB104-4 1.2 Oscillator Coil 13 1st I.F. Transformer 72B5

L4	2nd I.F. Transformer	72 B 6
L5	Choke Coil (RF)	AB103-1
ΤI	Output Transformer (specify full speaker part no. including mfg. code when ordering.)	

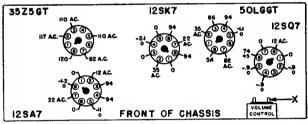

MISCELLANEOUS

Description	Part No.
Background, Dial	22C5-1
Cabinet, R643-W	35C25
Cable, Battery (complete with plug)	A1026
Cap, Grid	
Cord, Dial (5" on tuner)	50A1-1
Drum and Hub, Tuning	A1035
Escutcheon	
Iron Core, with wire (Osc.)	
Iron Core, with wire (Ant.)	71B1-4
Knob	
Permeability Tuner Assembly, complete	


Scale, Glass Dial 21B13 (specify all numbers appearing on Output Trans. as well as speaker when ordering.) Spring, Tuner slide cord tension 19A1-4 Spring, Tuner, front bearing takeup 19A5 Spring, Tuner, back bearing takeup..... 19A6 Spring, Hairpin (To hold Ant-Osc. coils)..... Terminal, Tuner slide cord 9A8-1

VOLTAGE DATA

All readings made between tube socket terminals and chassis. Voltages indicated have been obtained using a Vacuum Tube Voltmeter. A second voltage reading is shown made with a 1000 ohm per voltmeter, when use of this instrument would result in appreciably lower readings. Measured with a fresh battery, volume control full on, dial at the high frequency end, no signal.



COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

NOTE: 1. In later production R9 and C9a are disconnected from pin Na. 8 of the 35Z5 and a 33-ohm 1-watt resistor (R11) is connected between pin No. 8 and the junction of R9 and C9a.

VOLTAGE DATA:---

Bottom View of Chassis, Showing Voltages

- -All readings made between Tube Socket Terminals and Switch Lug on volume control (Point "X" on drawing).
- -Measured on a 117 Volt A.C. line.
- ---Volume control full on.
- -Dial tuned to low frequency end, no signal.
- -Voltages indicated obtained on Vacuum Tube voltmeter.
- ---A second voltage reading is shown made with a 1000 ohm-per-volt meter when use of this instrument would result in appreciably lower readings.

POWER SUPPLY:---

110-120 Volts A.C. or D.C. U.L. approved. Frequency—50 to 60 cycles Power consumption—30 watts 2. The jumper between pins 4 and 5 on the 12SQ7 is removed and one pin is connected to the secondary of the second I.F. (L3) and the other pin is connected directly to the junction point of R2 and the secondary of the 1st I.F. (2).

CONDENSERS

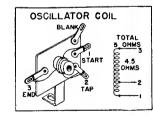
RESISTORS

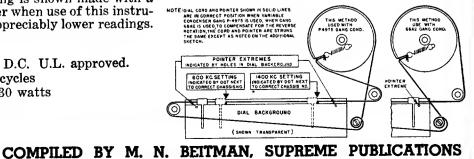
•••			
Symbol	Cap	acity	Type
C1	.1	mfd.	200 V.
C2	.00005	míd.	Mica
C3	.02	mfd.	
C4		míd.	
		mfd.	
C6	.00025	mfd.	Mica
C7			Mica
C8			
C9a3			(Elect.) 150 V.
C9b3	υ.	mia.	(Elect.) _150 V.
C9c2	0.	mfd.	(Elect.) _150 V.
C10	.2	mfd.	(Elect.)150 V.
C11	.05	mfd.	
			600 V.
			(max.)Var.
			(max.)Var.
C14	.00002	mia.	Mica
C20a3	0.	mfd.	(Elect.)150 V.
			(Elect.)150 V.
0.00			

COLLS

2nd I. F. Trane.

Symbol


LI ...


1.3

1.4

L5

Symbol	Resistance	Туре
R1	22,000 ohms	C½W
R24	70,000 ohms	C½W
R3	10 meg of	C½₩
R42	20,000 ohms	C½W
R54	70,000 ohms	C½W
R6	150 ohms	C½W
R71	50,000 ohms	C½W
R8	1 meg ol	hm Volume
	Contro	ol
R9	150 ohms	CIW
R10	1,000 ohms	CIW
R11	33 ohms	CIW

Description

.....Loop

Osc. Coil

......Choke, Filter

MANUAL	OF	1946	MOST	POPULAR	SERVICE	DIAGRAMS
						-

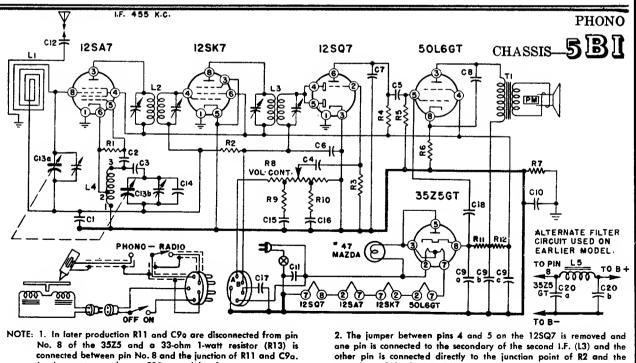
5BI_CHASSIS NON-PHONO Admiral

Connect Signal Generator to—	Dummy Antenna Between Radio and Generator	Set Generator Frequency to—	Set Receiver Dial Frequency to—	Adjust Following Trimmers	Type of Adjustment
Tuning Condenser Antenna Stator	250 mmfd. Condenser	455 KC.	High frequency end of Dial	C—D 2nd I. F. A—B 1st I. F.	Adjust to maximum Output
Tuning Condenser Antenna Stator	250 mmfd. Condenser	1630 KC.	High frequency end of Dial	E-Osc.	Adjust to maximum Output
Loop radiator (or place pickup lead from gen. close to loop of set to obtain adequate signal).	No actual connec- tion between set and generator.	1400 KC.	Tune in generator signal	F—Ant.	Adjust to maximum Output

TOP VIEW

ALIGNMENT PROCEDURE

1. Be sure Radio Receiver and Signal Generator are thoroughly warmed up before starting alignment procedure.


2. Check setting of Pointer Extremes and note correct 600 K.C. and 1400 K.C. positions on Dial Background. (See Dial Diagram on reverse side.)

3. Connect Output Meter across Voice Coil.

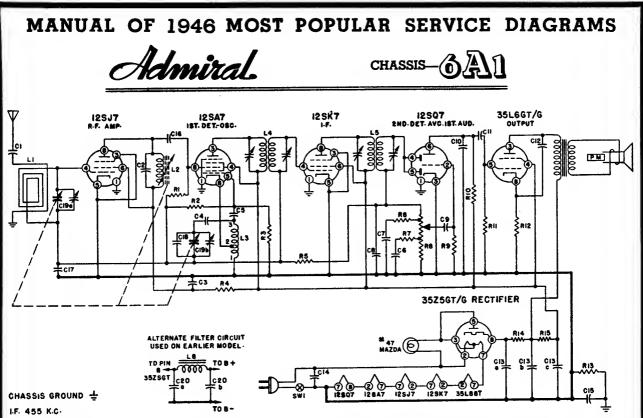
4. Turn Receiver Volume Control full on.

5. Use lowest Output setting of Signal Generator capable of producing adequate Output Meter indication and then proceed as outlined in chart below.

6. Repeat adjustments to insure final overall maximum results.

In these sets, condenser C18 was deleted.

secondary of the 1st I.F. (L2).


NOTE: Connect points "A" and "B" with jumper when testing chassis with phono plug removed

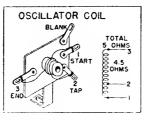
LIGHT #47 PILOT 2SA 12SQ7 12SK7 50L6 GT

TUBE & TRIMMER LOCATION

BACK OF CHASSIS

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

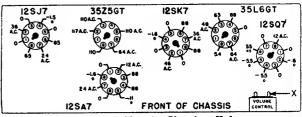
CONDENSERS									
Symbol	Copoc	ity Type							
C-1	.005	mfd600 V.							
C-27	/85.	mmfdMico							
C-3	.05	mfd							
C-4	.02	mfd							
C-5	50.	mmfdMico							
C-6	250.	mmfdMica							
C.7	.01	mfd							
C-8		mfd400 V.							
C-9	.01	mfd							
C-10	500.	mmfdMico							
C-11	.01	mfd							
C-12	.02	mfd							
C-13a	30.	mfd Elect150 V.							
C-13b		mfd Elect, 150 V.							
C-13c		mfd Elect150 V.							
C-14		mfd							
C-15		mfd							
C-16		mmfdMico							
C-17		mfd							
C-18		mmfdMico							
C-190		mmfd (mox)Vor.							
C-19b		mmfd (max.)Vor.							
C-20o		mfd Elect,150 V.							
C-20b		mfd Elect150 V.							


	COILS	
Symbol		Description
L-1(Sec.	2,3 ohms)	Loop
L-2(2.5	ohms)	R. F. Coil
L-4	1st	I. F. Trons.
	2nd	
L-6,(325	ohms)C	hoke, Filter

SPECIFICATIONS

POWER SUPPLY:---

Symbol Resistonce Type R-1,..... 10,000 ohms .C1/2W 10 meg ohmC1/2W R-2..... R-3...... 22,000 ohmsC1/2W R-4..... 100 ohmsC1/2W R-5..... 1 meg ohmCl/2W R-7..... 27,000 ohmsC1/2W R-8..... ohms from the stort, due to the toper). R-9..... 5 meg ohmC1/2W R-10......270,000 ohmsC1/2WC1⁄2W R-11......470,000 ohmsC1/2W R-12..... 150 ohms R-13..... 150,000 ohmsC1/2W 150 ohmsC1W R-14..... R-15..... 1,000 ohmsC1W R-16..... 33 ohmeC1W


RESISTORS

110-120 Volts A.C. or D.C. Frequency 50-60 cycles. Power Consumption-30 watts.

NOTE: 1. In later production R14 and C13a are disconnected from 2. The jumper between pins 4 and 5 on the 12SQ7 is removed and one pin Is connected from pin #8 of the 3325 and a 33-ohm 1W resistor (R16) is connected from pin #8 to the junction of R14 and C13a. 2. The jumper between pins 4 and 5 on the 12SQ7 is removed and one pin Is connected to the second or pin the second I.F. (L5) and the other pin is connected directly to the junction point of R5 and the secondary of the 1st I.F. (L4).

VOLTAGE DATA:--

Bottom View of Chassis, Showing Voltages.

-All readings made between Tube Socket Terminals and Switch Lug on volume control (Point "X" on drawing).

- -Measured on a 117 Volt A.C. line.
- -Volume control full on.
- -Dial tuned to low frequency end, no signal.
- -Voltages indicated obtained on Vacuum Tube voltmeter.
- -A second voltage reading is shown made with a 1000 ohm-per-volt meter when use of this instrument would result in appreciably lower readings.

CIRCUIT:--

Chassis 6A1 A.C.-D.C. 6 Tube Superheterodyne, with R.F. stage: Single tuning range, 540 Kc. to 1630 Kc., covering standard broadcast band; built-in AEROSCOPE loop antenna, with provision for connecting an external antenna.

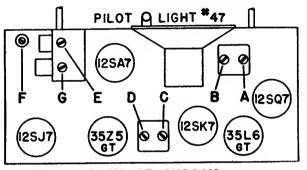
COMPILED BY M. N. BEITMAN SUPREME PUBLICATIONS

Admiral.

DIAL DRUM POSITION

If the dial drum position is disturbed, it should be carefully re-positioned to insure correct tuning of the permeability tuned coil. When the gang condenser is fully open, the drum will be properly positioned if the center of the condenser shaft and the dial cable hole on the drum are in a straight line parallel to the chassis base. Note that the dial cable hole should be on the left side (looking at front) of the chassis.

ALIGNMENT PROCEDURE

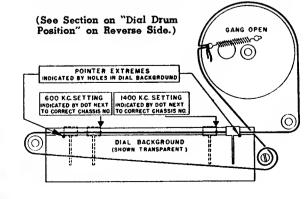

- Be sure Radio Receiver and Signal Generator are thoroughly warmed up before starting alignment procedure.
- 2. Check setting of Pointer Extremes and note correct 600 K.C. and 1400 K.C. positions on Dial Background. (See Dial Diagram on reverse side.)
- 3. Connect Output Meter across Voice Coil.
- 4. Turn Receiver Volume Control full on.
- 5. Use lowest Output setting of Signal Generator capable of producing adequate Output Meter indication and then proceed as outlined in chart below.
- 6. Repeat adjustments to insure final overall maximum results.

R. F. SLUG POSITION

If the tuned coil slug needs replacing or re-positioning, first see that the dial drum is in its proper position. Then with the threaded stud half-way through the bakelite, note that the top of the slug is flush with the top of coil form. Then re-align.

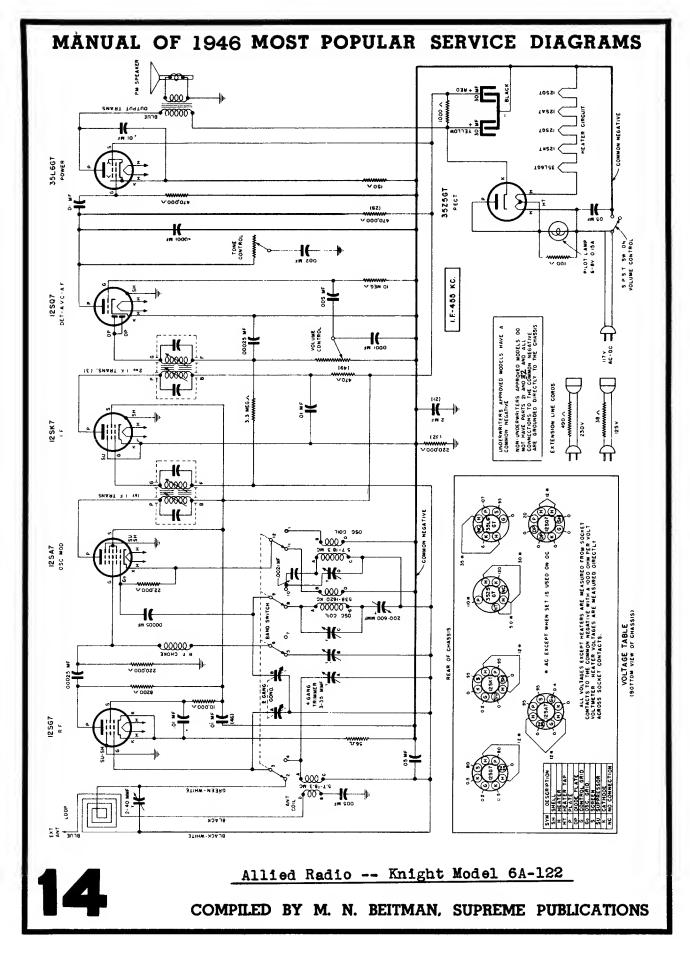
TOP VIEW

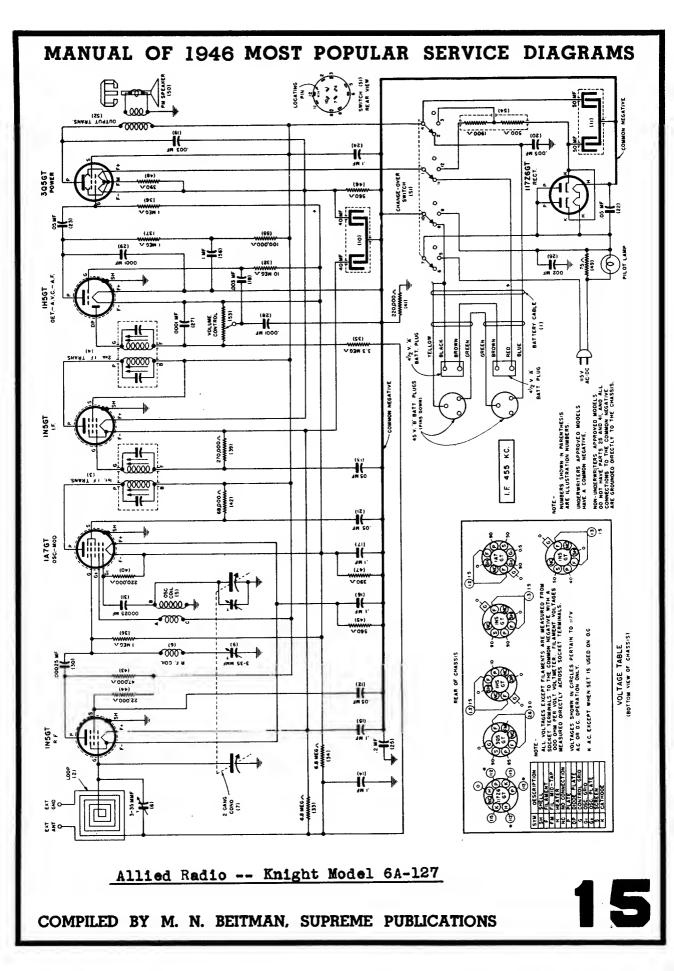
TUBE & TRIMMER LOCATION

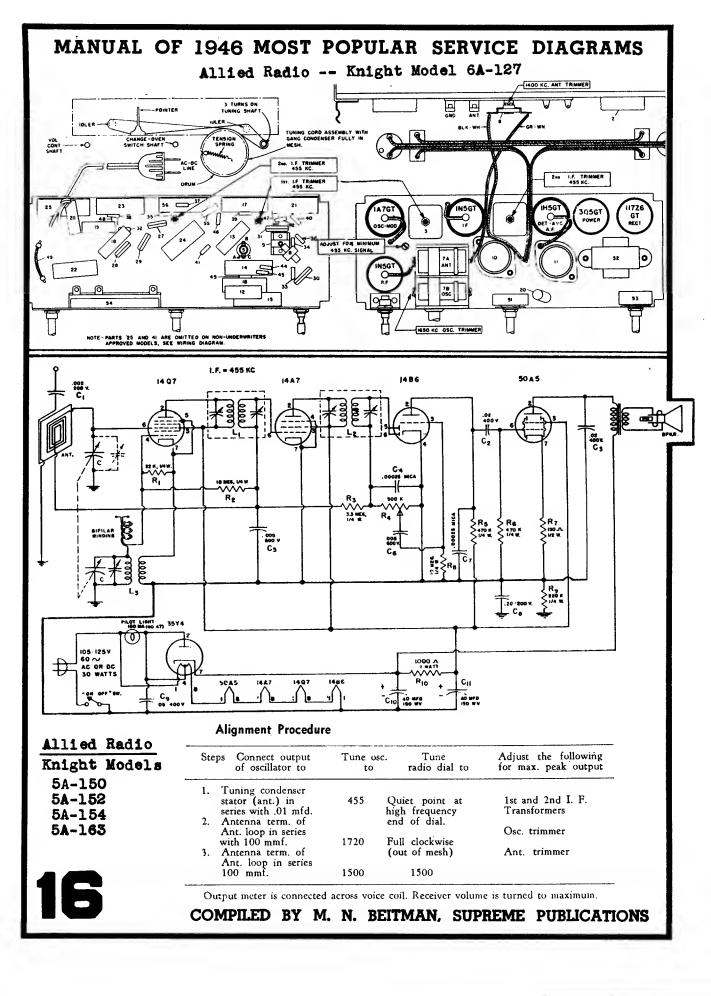


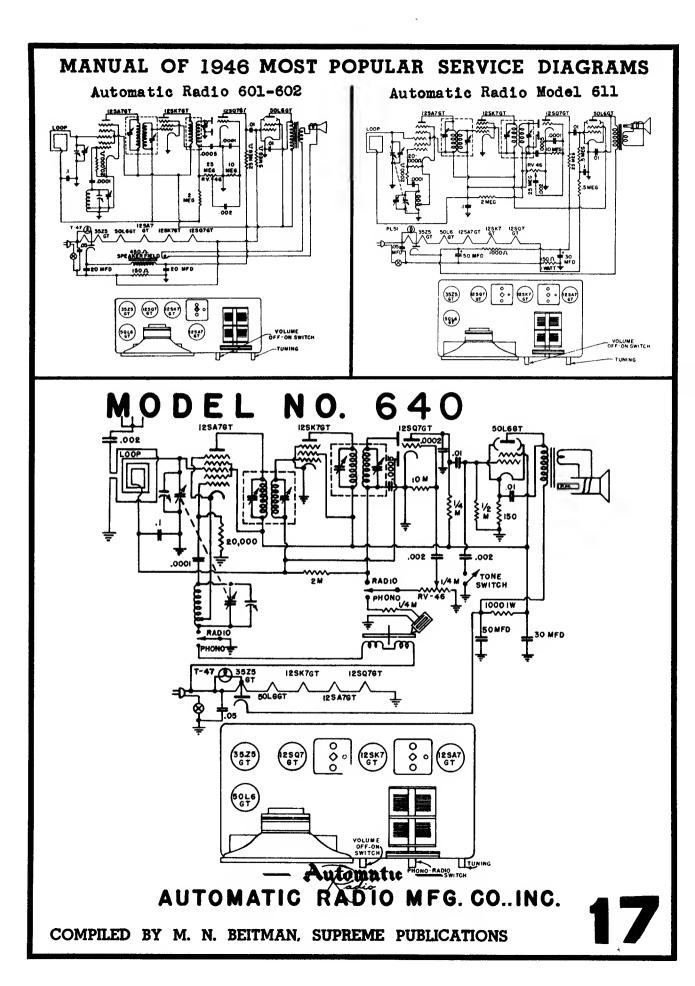
Connect Signal Generator To—	Dummy Antenna Between Radio and Generator	Set Generator Frequency To—	Set Receiver Dial Frequency To—	Adjust Following Trimmers	Type of Adjustment
12SA7 Control Grid	250 mmfd. Mica Condenser	455 KC.	High frequency end of Dial	A and B—2nd I. F. C and D—Ist I. F.	Adjust to maximum Output
External Antenna Wire on Loop	250 mmfd. Mica Condenser	1630 KC.	High frequency end of Dial	E—Osc.	Adjust to maximum Output
External Antenna Wire on Loop	250 mmfd. Mica Condenser	1400 KC.	Tune in Generator signal	F-R. F. (Iron Core)	See Note Below
Loop radiator (or place pickup lead from gen. close to loop of set to obtain adequate signal).	No actual connection between set and generator.	1400 KC.	Tune in Generator signal	G—Ant.	Adjust to maximum Output

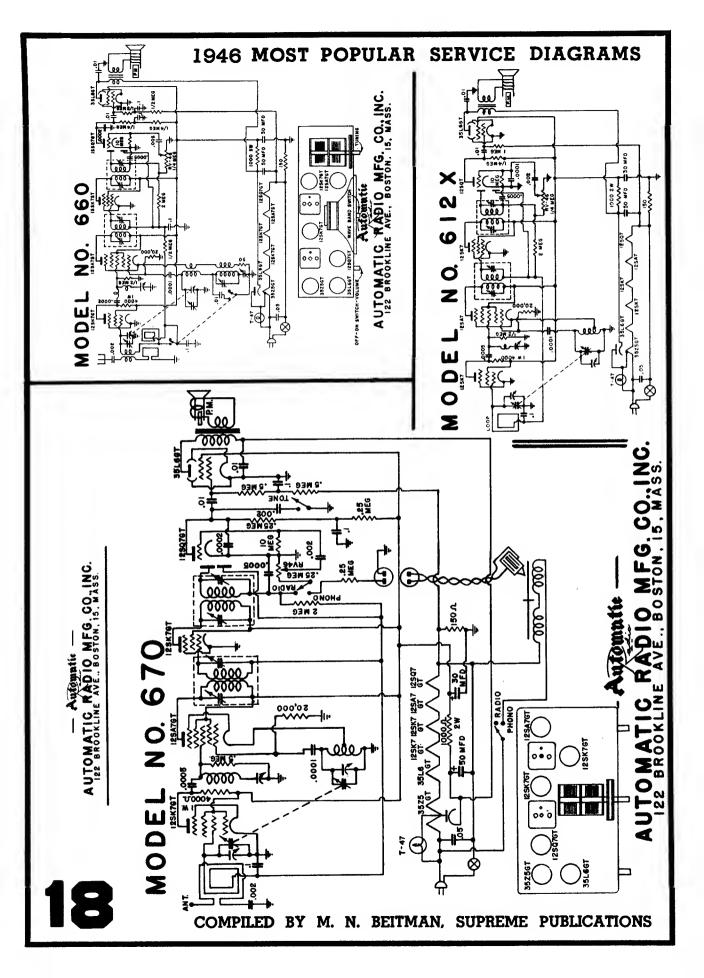
NOTE: Adjustment F is the threaded stud at the top end of the slug wire. Screw stud up or down in the bakelite for maximum output. Alignment is correct if the output is reduced when the position of the lever arm is changed slightly in either direction (up or down).

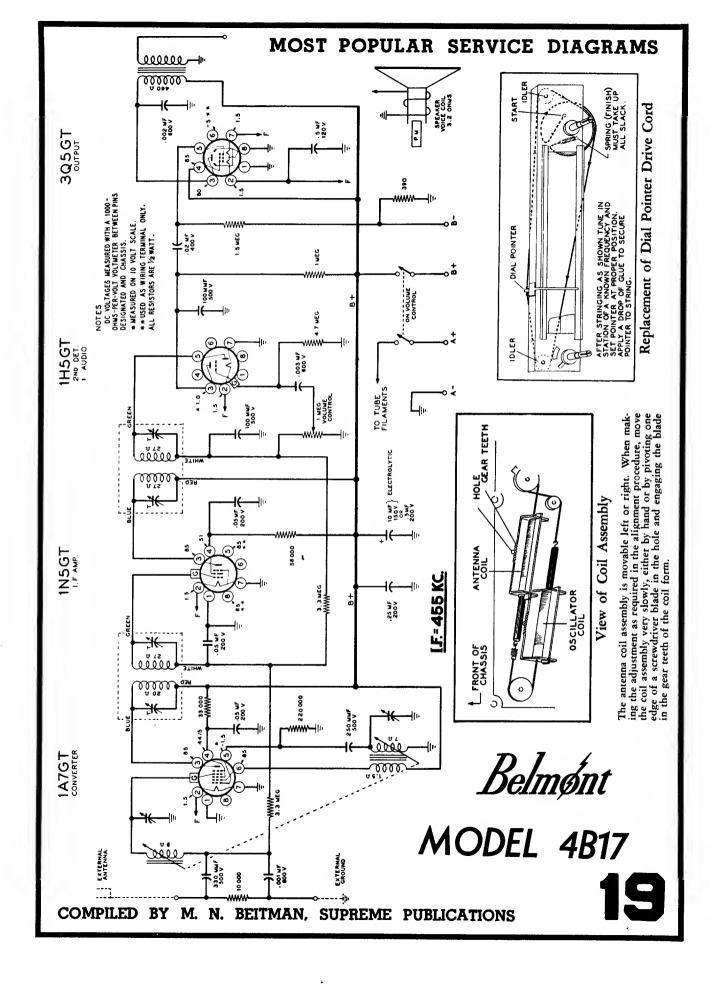

POINTER SETTINGS AND DIAL CORD STRINGING

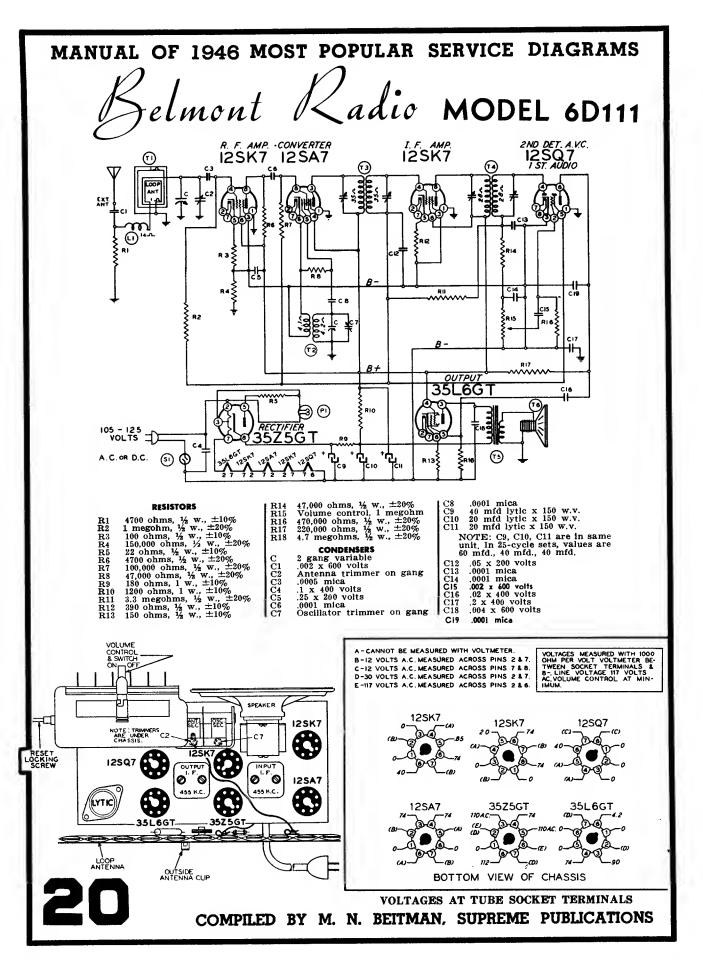


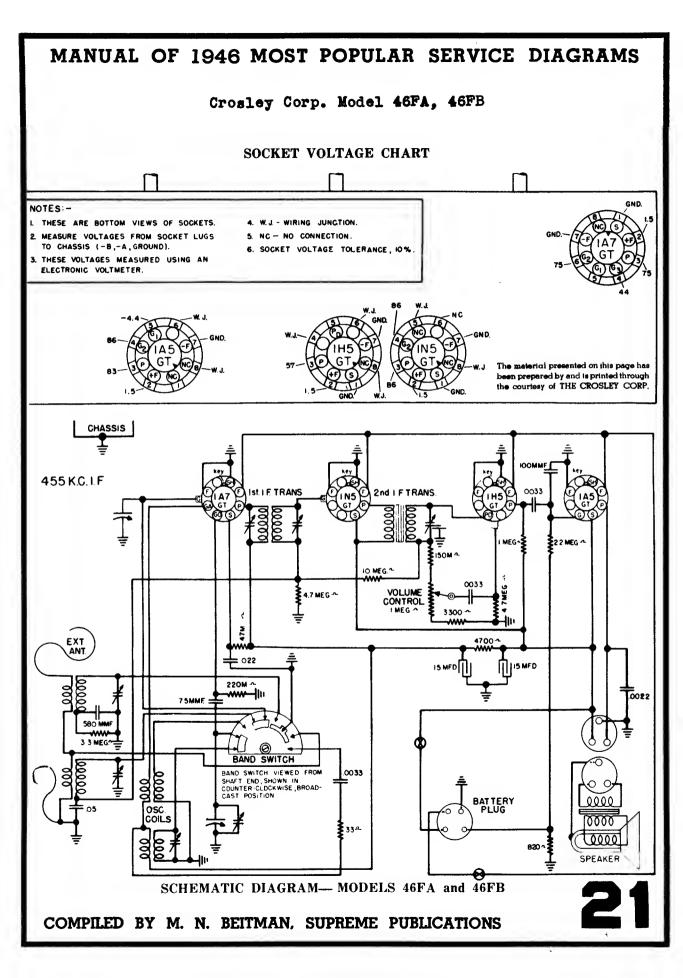

Admiral. Corporation.

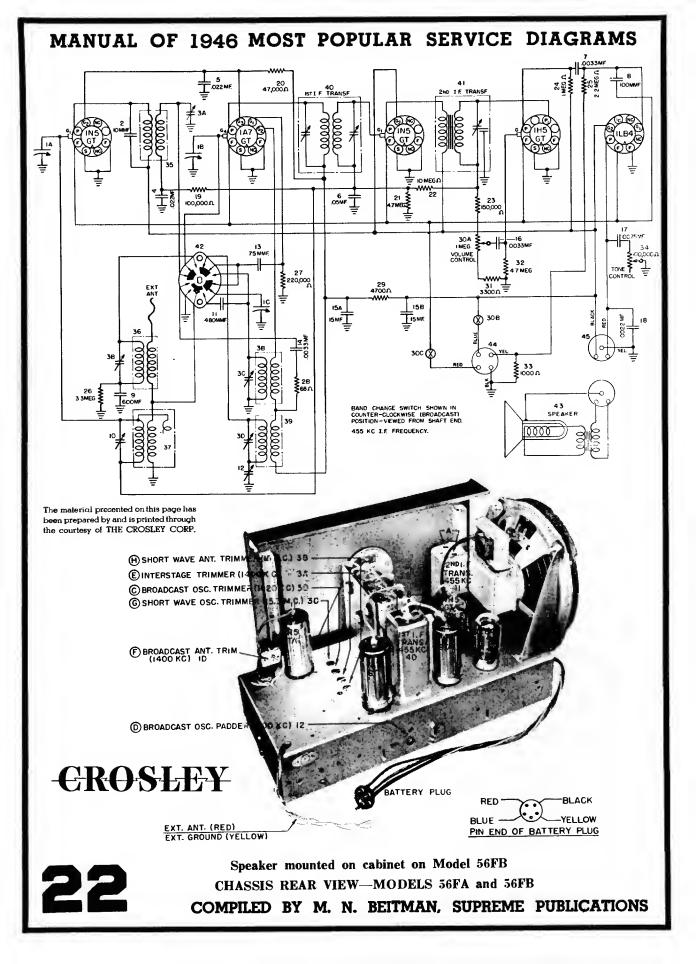

3800 CORTLAND STREET CHICAGO 47, ILL.











Crosley Corp. Model 56FA, 56FB

Alignment Sequence	Sigr	al Generator Outp	out	Posit	tion of	Adjust for Maximum Output	
	Frequency in kc.	In Series with	То	Band Switch	Tuning Dial		
1	455	200 mmf.	Ant.	A	1,620	A & B	
2	1,620	200 mmf.	Ant.	A	1,620	С	
3	600	200 mmf.	Ant.	A	600	D	
4	1,620	200 mmf.	Ant.	A	1,620	С	
5	1,400	200 mmf.	Ant.	A	1,400	E & F	
6	600	200 mmf.	Ant.	A	600	D	
7	15,300	400 ohms	Ant.	0	15,300	G*	
8	15,000	400 ohms	Ant.	0	15,000	Н	
		S	SOCKET VO	LTAGE CHAF	RT.		
	P1	~	1	۴٦	٣	l	

Alignment adjustment locations are shown on page 22 Chassis, Rear View---Models 56FA and 56FB

3. THESE VOLTAGES MEASURED USING AN ELECTRONIC VOLTMETER.

.5

R2

2. MEASURE VOLTAGE FROM SOCKET LUG

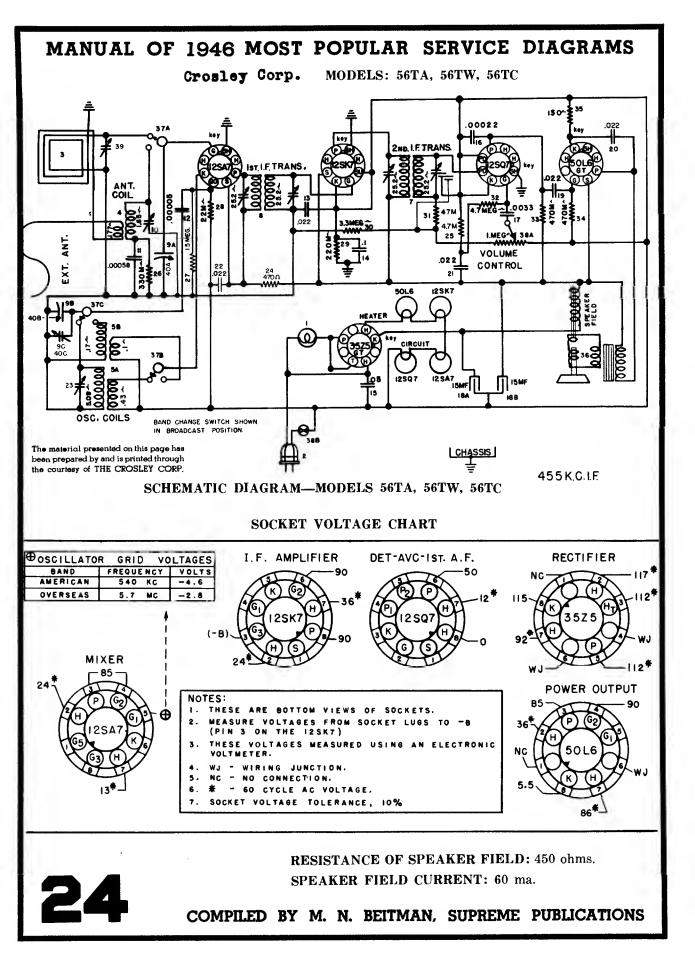
4. WJ-WIRING JUNCTION.

TO CHASSIS (GROUND).

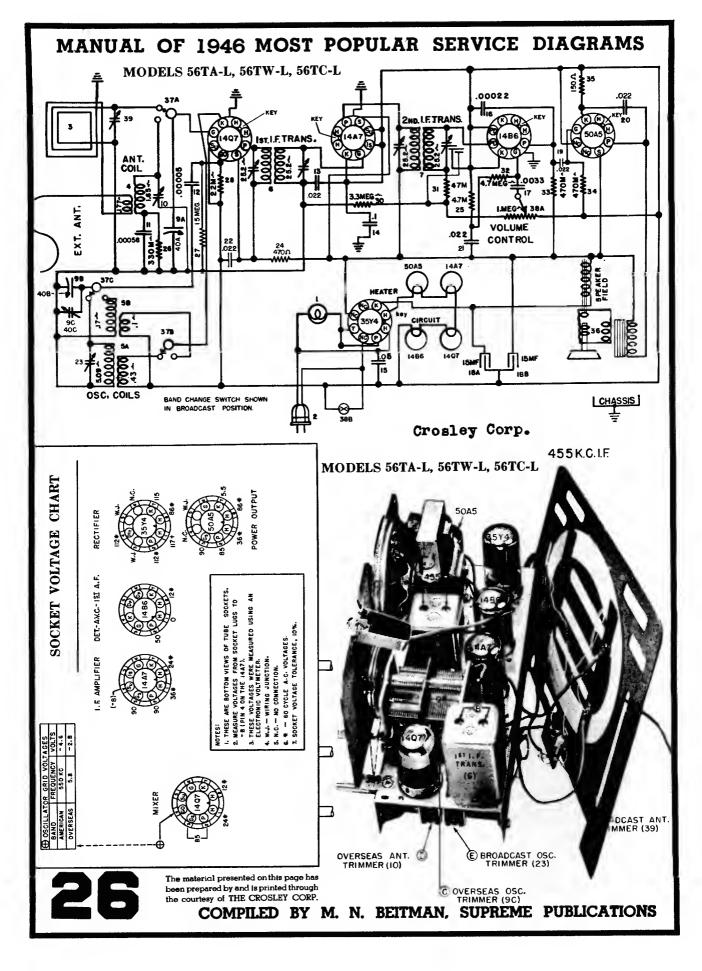
5. NC - NO CONNECTION.

6. SOCKET VOLTAGE TOLERANCE, 10%.

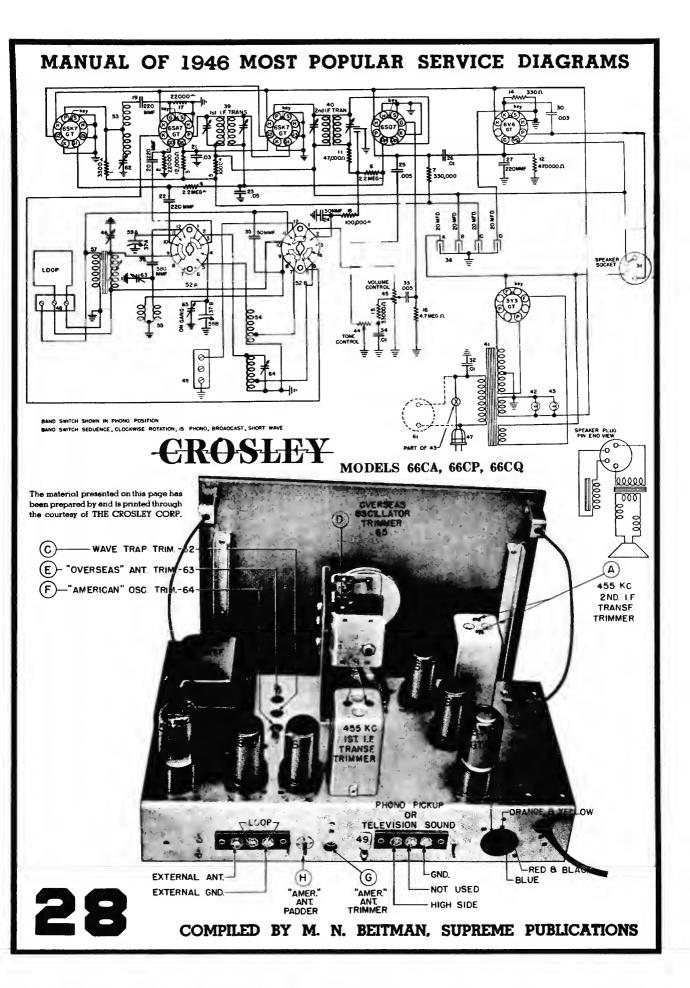
POWER OUTPUT 8 (-B) W.J. W.J. 8 (-B) W.J. 1 (-B) W.J.


COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

the courtesy of THE CROSLEY CORP.

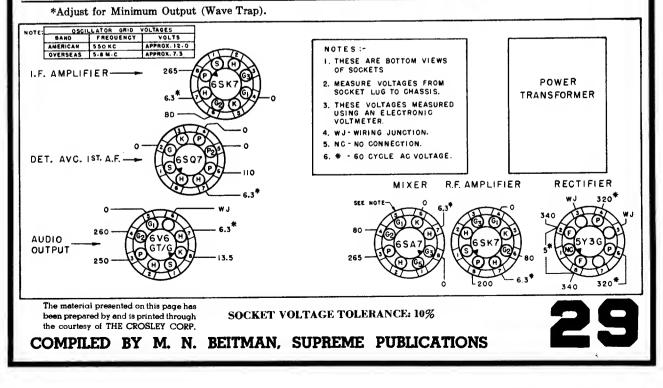

DET. A.V.C. IST A.F.

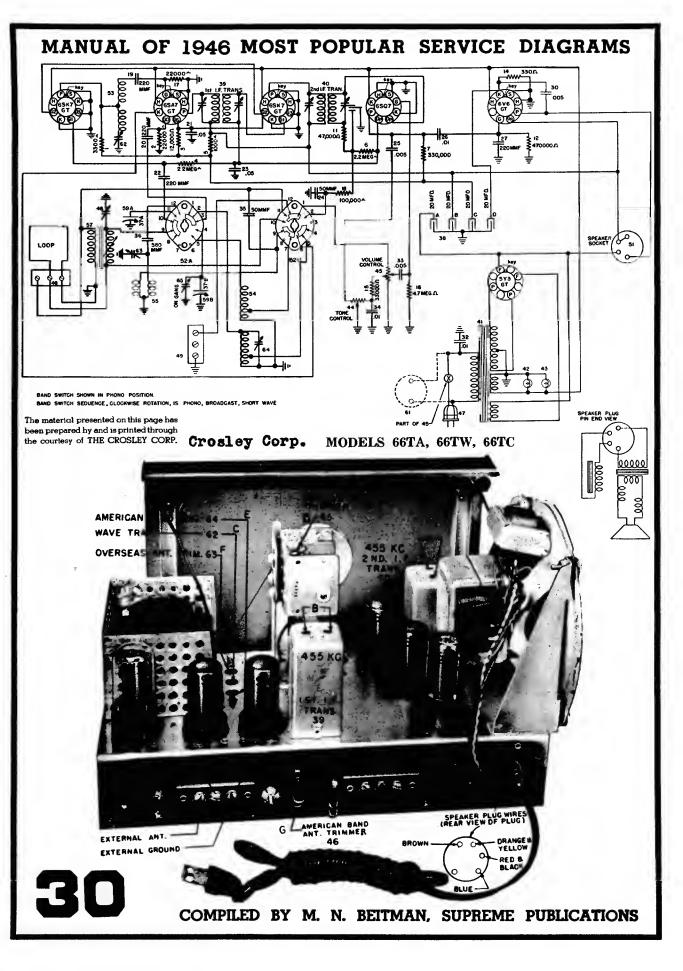
w. . I


ND.

er al		46 N	IOS	T PC	DPUI	LAR	SEF	VICE	DIAGRAMS
ALIGNMENT PROCEDURE Turn the tuning condenser to the completely closed position against the stop and set the dial pointer to the reference line at the end of the dial scale. Connect the output meter across the speaker voice coil. The r.f. signal input from the signal generator should be connected to the external antenna lead. Connect the signal generator ground through a 0.1 mfd. condenser to —B (pin 3 on 12SK7 tube	Turn the volume control on full and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.	been prepared by and is printed through the courtesy of THE CROSLEY CORP. Models 56TA, 56TW, 56TC		Adjust for Maximum Output	A&B	C	D	E & F	NOTE: When aligning the short-wave oscillator trimmer (C), be sure that the circuit is aligned at the correct frequency and not at the image frequency which is 910 kilocycles lower as indicated by the receiver dial. To check: Tune in the generator frequency, then increase the generator output and tune in the image frequency. The image frequency should be weaker than the fundamental and audible 910 kilocycles lower on the receiver dial. If the image cannot be tuned in, the oscillator trimmer is adjusted to the wrong peak; i.e., the oscillator trimmer may be adjusted to the image or one of the harmonics instead of the fundamental frequency. The correct peak is the second one heard as the trimmer adjustment screw is opened from the completely closed position.
against the ected to the lenser to —B	tor output to inerator outpu	bet the Models 56TA,	on of	Tuning Dial	1,620	15,300	15,000	1,400	e sure that the 910 kilocycles n increase the aker than the be tuned in, t djusted to th sak is the se position.
ROCEDURE seed position al scale. ce coil. ould be conn. 0.1 mfd. cond	signal genera tain signal ge	r chart	Position of	Band Switch	A	0	0	A	NOTE: When aligning the short-wave oscillator trimmer (C), be sure that the correct frequency and not at the image frequency which is 910 kiloc; the receiver dial. To check: Tune in the generator frequency, then increase tune in the image frequency should be weaker that ible 910 kilocycles lower on the receiver dial. If the image cannot be tuned adjusted to the wrong peak; i.e., the oscillator trimmer may be adjusted to harmonics instead of the fundamental frequency. The correct peak is the trimmer adjustment screw is opened from the completely closed position.
ALIGNMENT PROCEDURE Turn the tuning condenser to the completely closed position pointer to the reference line at the end of the dial scale. Connect the output meter across the speaker voice coil. The r.f. signal input from the signal generator should be con Connect the signal generator ground through a 0.1 mfd. con	d adjust the ter, but main	ALIGNMENT CHART	put	To	Ant.	Ant.	Ant.	Ant.	oscillator trir image frequei e generator fi ige frequency r dial. If the i cillator trimm frequency. T from the com
ALIGNMENT ndenser to the completely ence line at the end of the meter across the speaker v t from the signal generator generator ground through	olume control on full an effection of the output me C action in the receiver.	Y	Signal Generator Output	In Series with	200 mmf.	400 ohms	400 ohms	200 mmf.	e short-wave l not at the c: Tune in th ncy. The ima n the receivel lk; i.e., the os fundamental w is opened
e tuning conde o the reference the output me signal input fr the signal gen	volume contr deflection of t VC action in	SLEY	Sign	Frequency in kc.	455	15,300	15,000	1,400	n aligning th frequency and dial. To check image freque cycles lower o the wrong pea istead of the ustment scre
 Turn the turn pointer to the Connect the The r.f. sign Connect the 	socket). 4. Turn the v mid-scale de prevent AV	GRC		Alignment Sequence	1	5	m	4	NOTE: When the correct fr the receiver d tune in the ir ible 910 kilocy adjusted to th harmonics ins trimmer adju
56TA		20L92 BEITM			REME	56TW			25

9	MAN	UAL C)F 19	46	M	OS	T PC	PUL	AR	SEF	VICE	DIAGRAMS
	top and set the dial	external antenna lead. (pin 4 on 14A7 tube	produce approximately as low as possible to		MODELS: 56TA-L, 56TW-L, 56TC-L		Adjust lor Maximum Output	A&B	U	Q	E&F	NOTE: When aligning the short-wave oscillator trimmer (C), be sure that the circuit is aligned at the correct frequency and not at the image frequency which is 910 kilocycles lower as indicated by the receiver dial. To check: Tune in the generator frequency, then increase the generator output and tune in the image frequency. The image frequency should be weaker than the fundamental and audbie 910 kilocycles lower on the receiver dial. If the image cannot be tuned in, the oscillator trimmer is adjusted to the wrong peak; i.e., the oscillator trimmer may be adjusted to the image or one of the harmonics instead of the fundamental frequency. The correct peak is the second one heard as the trimmer adjustment screw is opened from the completely closed position.
	against the s		or output to nerator output		O DELS: 56TA	jo uo	Tuning Dial	1,620	15,300	15,000	1,400	sure that th 910 kilocycles n increase the kker than the be tuned in, t adjusted to th ak is the sec tion.
ROCEDURE	cuning condenser to the completely closed position against the stop and he reference line at the end of the dial scale.	the output meter across the speaker voice coil. signal input from the signal generator should be connected to the the signal generator ground through a 0.1 mfd. condenser to $-B$	Turn the volume control on full and adjust the signal generator output to produce mid-scale deflection of the output meter, but maintain signal generator output as low prevent AVC action in the receiver.			Position of	Band Switch	Ą	0	0	A	NOTE: When aligning the short-wave oscillator trimmer (C), be sure that the correct frequency and not at the image frequency which is 910 kilocy the receiver dial. To check: Tune in the generator frequency, then increase tune in the image frequency. The image frequency should be weaker than ible 910 kilocycles lower on the receiver dial. If the image cannot be tuned i adjusted to the wrong peak; i.e., the oscillator trimmer may be adjusted t harmonics instead of the fundamental frequency. The correct peak is the trimmer adjustment screw is opened from the completely closed position.
ALIGNMENT PROCEDURE	Turn the tuning condenser to the completely closed pointer to the reference line at the end of the dial scale.	the output meter across the speaker voice coil. signal input from the signal generator should be the signal generator ground through a 0.1 mfd.	l adjust the s ter, but maint	ALIGNMENT CHART	Alignment Adjustment Locations are shown on page 26.	tput	To	Ant.	Ant.	Ant.	Ant.	aligning the short-wave oscillator trimmer (C), quency and not at the image frequency which al. To check: Tune in the generator frequency, tage frequency. The image frequency should be eles lower on the receiver dial. If the image cann e wrong peak; i.e., the oscillator trimmer may the ead of the fundamental frequency. The correct ment screw is opened from the completely closed r
ALI	aser to the c ine at the end	r across the sp om the signal erator ground	ol on full and he output met he receiver.		Locations are sh	Signal Generator Output	In Series with	200 mmf.	400 ohms	400 ohms	200 mmf.	e short-wave not at the i k: Tune in th ncy. The image n the receiver ak; i.e., the o fundamental is opened from
	tuning conder the reference l	e output mete gnal input fr 1e signal gene	volume control on full a leflection of the output r /C action in the receiver.		ment Adjustment	Sig	Frequency in kc.	455	15,300	15,000	1,400	n aligning the requency and dial. To chec image frequer sycles lower of the wrong pe stead of the stment screw
	1. Turn the pointer to t	 Connect the The r.f. sig Connect the 	4. Turn the v mid-scale de prevent AV	4	Aligni		Alignment Sequence	-	2	3	4	NOTE: When the correct fr the receiver of tune in the i ible 910 kiloc adjusted to t harmonics ins trimmer adjus
56TA-L	COMPI		1. I. I.	26TC-L	TTM	J. AN,	SUPF	EME	26TW-L	LICAT		The material presented on this page has been prepared by and is primed through the courteey of THE CROSLEY CORP.

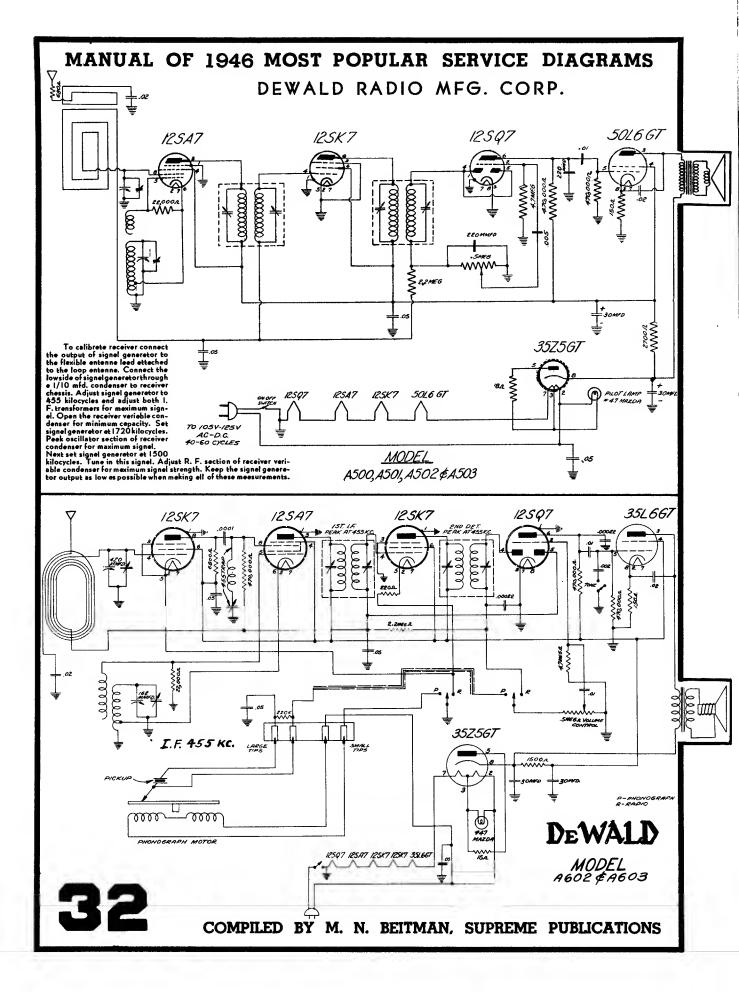


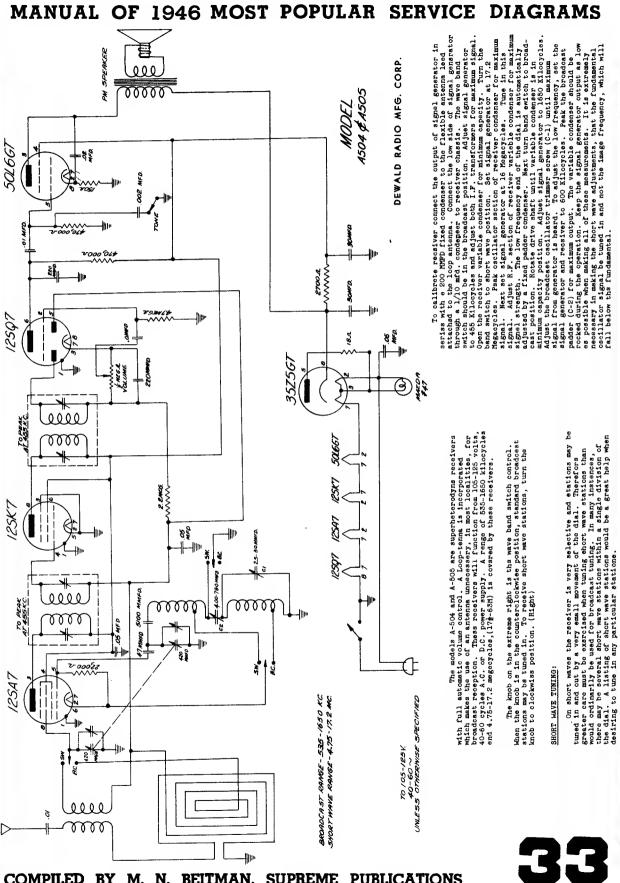

ALIGNMENT PROCEDURE, CROSLEY CORP. MODELS 66CA, 66CP, 66CQ

- 1. Turn the tuning condenser to the completely closed position against the stop and set the dial pointer to the reference line at the end of the dial scale.
- 2. Connect the output meter across the speaker voice coil.
- 3. The r.f. signal input from the signal generator should be connected to the external antenna post as indicated in the alignment chart. Connect the low side (ground) of the signal generator to the chassis.
- 4. Turn the volume control on full and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain the signal generator output as low as possible to prevent AVC action.

Alignment adjustment locations are shown on page 28 Chassis, Rear View-Models 66CA, 66CP, 66CQ

	Signa	l Generator Outpu	Positi	ion of	Adjust for Maximum Output	
Alignment Sequence	Frequency in kc.	In Series With				
1	455	200 mmf.	Ant.	A	1620	A & B
2	455	200 mmf.	Ant.	A	1620	C*
3	15,300	400 ohms	Ant.	0	15,300	D
4	15,000	400 ohms	Ant.	0	15,000	Е
5	1620	200 mmf.	Ant.	A	1620	F
6	1400	200 mmf.	Ant.	A	1400	G
7	600	200 mmf.	Ant.	A	600	Н
8	1400	200 mmf.	Ant.	A	1400	Recheck G



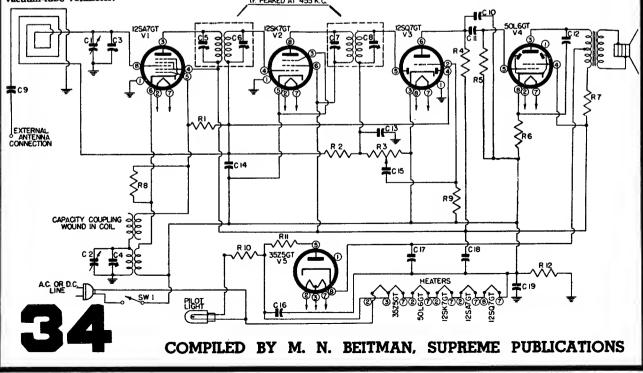


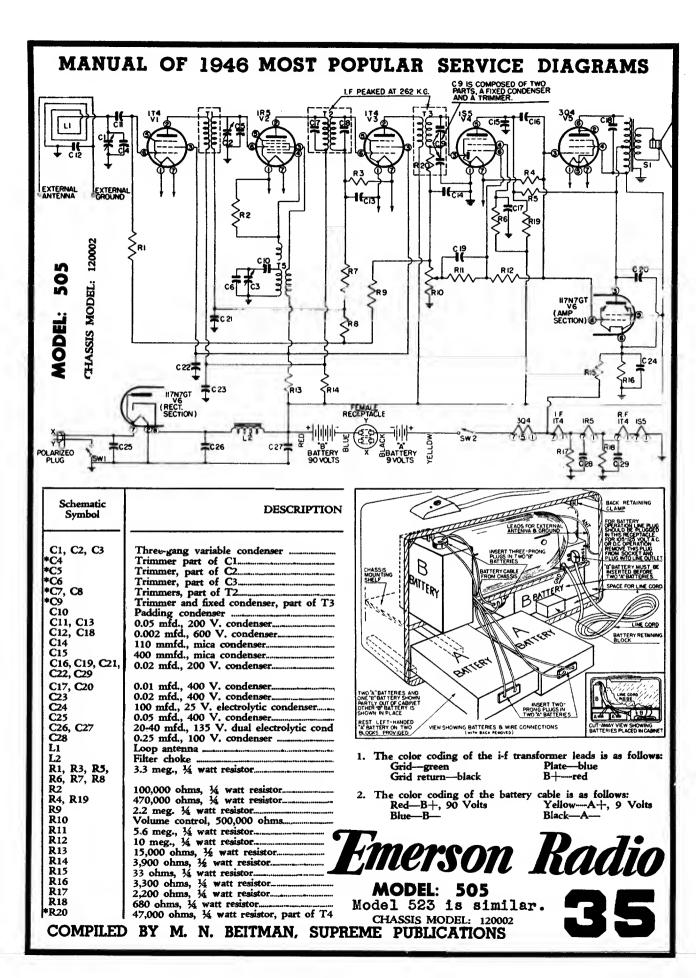
MANUAL OF 1946 M	IOS	T PO	OP	U	LA	R	S	EF	IVI	CE DIAGRAMS	
ALIGNMENT PROCEDURE anning capacitor to the completely closed position against the stop, and set the dial pointer prence line at the end of the dial scale. The output to the high or treble position. The output meter across the speaker voice coil. The output from the signal generator should be connected to the external antenna post. The signal generator ground to the chassis. The output to produce approximately deflection of the output meter, but maintain signal generator output as low as possible AVC action in the receiver. ALIGNMENT CHART	Adjust for Marinum	Output	A&B	\$	D	ы	Ē.	5	H	*Adjust for minimum output (wavetrap). *Adjust for minimum output (wavetrap). NOTE: When aligning the short-wave oscillator trimmer (D), be sure that the circuit is aligned at the correct frequency and not at the image frequency which is 910 kilocycles lower as indicated by the receiver dial. To check: Tune in the generator frequency, then increase the generator output and tune in the image frequency. The image frequency should be weaker than the fundamental and audible 910 kilocycles lower on the receiver dial. If the image cannot be tuned in, the oscillator trimmer is adjusted to the wrong peak; i.e., the oscillator trimmer may be adjusted to the image or one of the harmonics instead of the fundamental frequency. The correct peak is the second one heard as the	
nst the stop, a nected to the e tor output to] generator outp	t of	Tuning Dial	1620	1620	15,300	15,000	1620	1400	600	r minimum output (wavetrap). a aligning the short-wave oscillator trimmer (D), be sure that the circuit is requency and not at the image frequency which is 910 kilocycles lower as in fial. To check: Tune in the generator frequency, then increase the generator mage frequency. The image frequency should be weaker than the fundamental clower on the receiver dial. If the image cannot be tuned in, the oscillator he wrong peak; i.e., the oscillator trimmer may be adjusted to the image or stead of the fundamental frequency. The correct peak is the second one he	position.
ROCEDURE I position agai n. e coil. should be con sis. signal genera intain signal r CHART	Position of	Band Switch	P	A	0	0	P	P	A	mmer (D), be sy which is 9 requency, the hould be weak ge cannot be mer may be s	stment screw is opened from the completely closed position.
ALIGNMENT PROCEDURE uning capacitor to the completely closed position aga rence line at the end of the dial scale. one control to the high or treble position. It output meter across the speaker voice coil. gnal input from the signal generator should be con the signal generator ground to the chassis. volume control on full, and adjust the signal genera deflection of the output meter, but maintain signal AVC action in the receiver. ALIGNMENT CHART	H	To	Ant.	Ant.	Ant.	Ant.	Ant.	Ant.	Ant.	oscillator tri nage frequenc e generator f e frequency s l. If the imag scillator trim frequency. Tl	rom the com
ALIGNMENT uning capacitor to the completely clos rence line at the end of the dial scale. one control to the high or treble posit one control to the signal generator gnal input from the signal generator is signal generator ground to the cha volume control on full, and adjust th deflection of the output meter, but m AVC action in the receiver. ALIGNMEN	Signal Generator Output	In Series with	200 mmf	200 mmf	400 ohms	400 ohms	200 mmf	200 mmf	200 mmf	t (wavetrap). e short-wave not at the in t: Tune in th cy. The imag cy. The imag s receiver dia ak; i.e., the o fundamental	v is opened f
uning capacit erence line at cone control to cone output met gnal input fi ne signal geno volume contr deflection of c AVC action	Sign	Frequency in kc.	455	455	15,300	15,000	1620	1400	600	r minimum output (wavetrap) a aligning the short-wa requency and not at th dial. To check: Tune in mage frequency. The ir i lower on the receiver he wrong peak; i.e., th stead of the fundamen	istment screv
 Turn the ti to the refeise Turn the to Connect th Turn the signal second th Turn the signal second to Turn the signal second to Turn the signal second to 	Alianmant	Sequence	-	2	ç	4	Q	9	7	*Adjust for *Adjust for NOTE: When the correct fr the receiver of tune in the ir 910 kilocycles adjusted to the harmonics ins	trimmer adju
FREQUENCY RANGE: America Band: 540 to 1600 kc. (Selector s Overseas Short-wave Band: 5.8 to lector switch at 0.) INTERMEDIATE FREQUENCY: POWER SUPPLY: 60 cycle a.c. (witch to 15 455	at A. mc. ()			 			R-(S: 6	DSLEY 56TA, 66TW, 66TC	
VOLTAGE RATING: 110-120 vol POWER CONSUMPTION: 60 wa POWER OUTPUT: 4.5 watts min	tts m		n.	ł	een p	repai	red by	y and	is print	is page has ted through LEY CORP.	

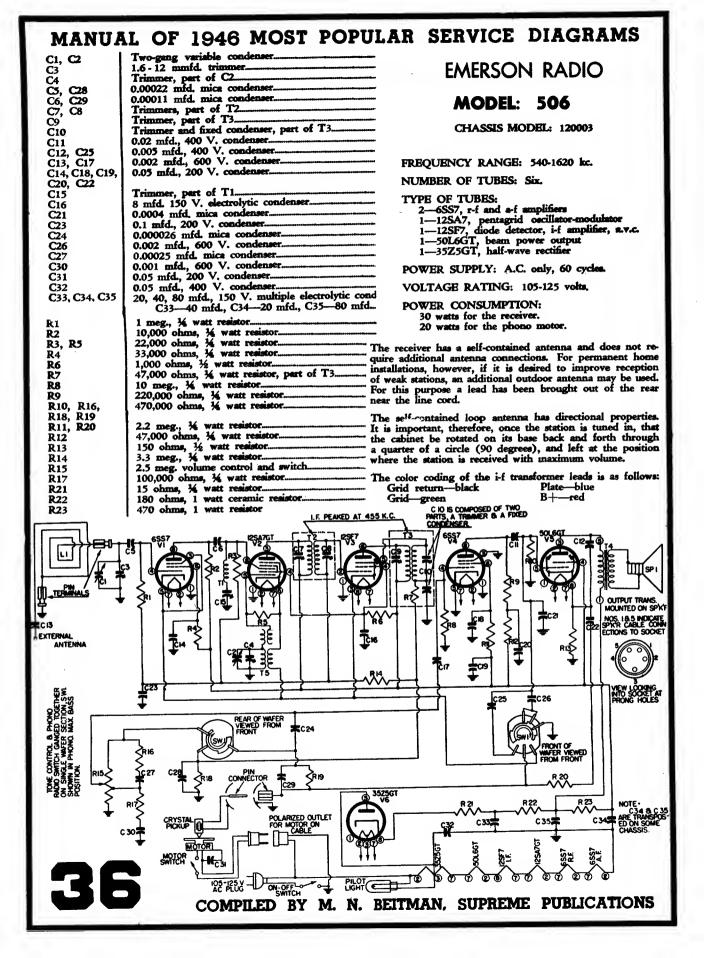
COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

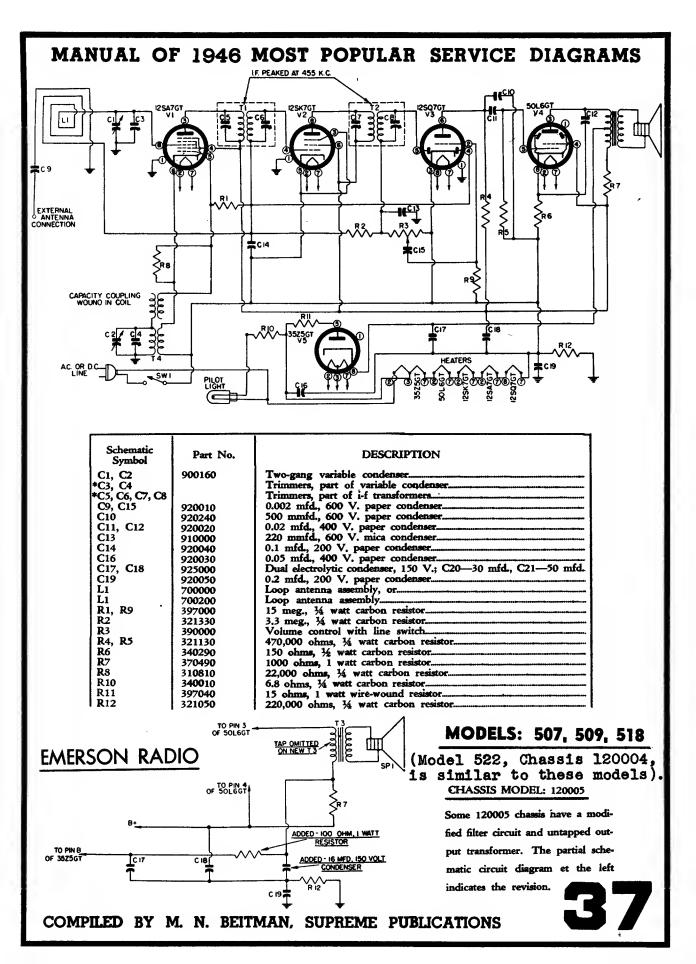
31

BY M. N. BEITMAN, SUPREME PUBLICATIONS COMPILED


EMERSON RADIO


Models 501, 502, 503, and 504.


CHASSIS MODELS: 120000, 120029


Schematic Symbol	Part	No.	DESCRIPTION									
Symbol C1, C2 C3 C4 C5, C6 C7, C8 C9, C15 C10 C11, C12 C13 C14 C16 C17, C18 C19 L1 L1 L1 R1, R9 R2 R3 R4, R5 R6 R7 R8 R10 R11 R11 R12	9200 9200 9200 9200 9200 9200 9200 9200	160 Tw Tri 160 Tw Tri 170 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 100 0.0 100 0.0 100 15 130 3.3 10 0.5 130 3.3 10 0.5 130 477 290 156 150 100 151 22, 100 100 100 10 100 10	Two-gang variable condenser (120029 chassis) Trimmer, part of variable condenser Trimmers, part of variable condenser Trimmers, part of second i-f transformer 0.002 mfd., 600 volt condenser 0.001 mfd., 600 volt condenser 0.002 mfd., 600 volt condenser 0.00022 mfd. mica condenser 0.00022 mfd. mica condenser 0.05 mfd., 150 V. dual dry-electrolytic condenser; C1730 mfd., C1850 mfd. 0.2 mfd., 200 volt condenser 1005 m mfd., 150 V. dual dry-electrolytic condenser; C1730 mfd., C1850 mfd. 0.2 mfd., 200 volt condenser 15 meg., ¼ watt resistor 0.5 meg. volume control 0.5 meg. volume control 470,000 ohms, ¼ watt resistor 150 ohms, ½ watt resistor 120,000 ohms, ¼ watt resistor 100 ohms, ¼ watt resistor 10 ohms, ¼ watt resistor 15 ohms, 1 watt wire-wound resistor 15 ohms, 1 watt wire-wound resistor 15 ohms, 1 watt wire-wound resistor 15 ohms, 1 watt resistor									
	· · · · · ·			PIN N	NUMBER	· · · · · · · · · · · · · · · · · · ·						
TUBE	1	2	3	4	5	6	7	8				
12SA7			89	89	*-10			*-1.6				
12 SK 7			· · · · ·	*-1.6		89		89				
12SQ7		*-0.7		*-1.6	-0.5	37.5						
50L6GT			110	89				6.2				
35Z5GT				116		116		117				

The following voltage readings are d-c measurements taken from B— (line switch) in the indicated tube-socket pin. 1000 ohms-per-volt meter should be used for all readings except those indicated by an asterisk (*), which should be taken with a vacuum-tube voltmeter.

Emerson Radio

ADJUSTMENTS

An oscillator with frequencies of 455, 600, and 1425 kc. is required.

An output meter should be connected across the primary or secondary of the output transformer for observing maximum response.

Plug the receiver into the power supply outlet in such a way that the ground side of the power line is connected to the receiver B—.

Always use as weak a test signal as possible, turning down the output of the test oscillator as the alignment of the receiver progresses.

Location of Coils and Trimmer Adjustments

The first i-f transformer (T2) is mounted on top of the chassis deck to the right of the variable condenser. The trimmers (C6, C7) are accessible through holes in the top of the can.

The second i-f transformer (T3) is mounted on top of the chassis between the variable condenser and the speaker. The trimmers (C8, C9) are accessible through holes in the top of the can.

The trimmer for the antenna (C5) and the trimmer for the oscillator coil (C11) are located on the variable condenser. The trimmer on the front section is for the oscillator coil.

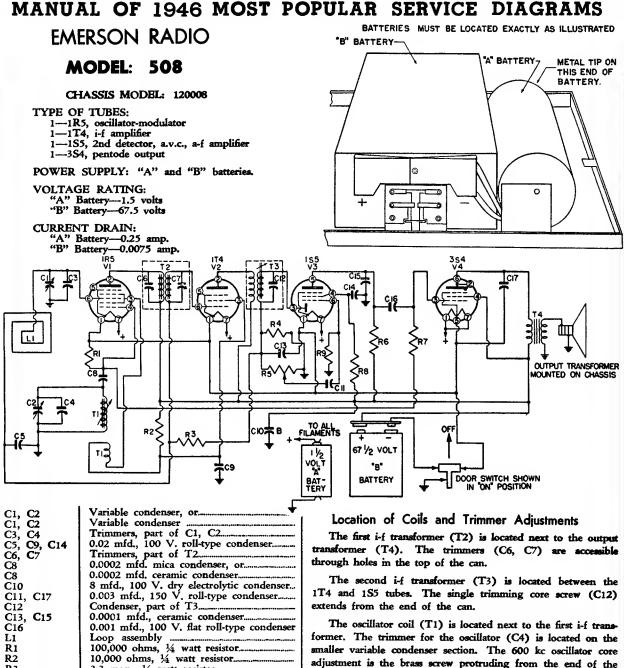
The oscillator coil (T4) is located underneath the chassis. The loop antenna acts as the antenna coil. Models: 507, 509, 518 Chassis: 120005

I-F Alignment

- 1. Rotate the variable condenser to the minimum capacity position.
- 2. Feed 455 kc, to the converter grid (stator of the r-f section of the variable condenser) and adjust the four i-f trimmers for maximum response.

R-F Alignment

- 1. Connect the oscillator to a coil composed of three to four turns of wire wound in a circle approximately 12" in diameter. This coil should be held parallel to and in line with the loop antenna of the receiver at a distance of 15 to 20 inches.
- 2. Radiate a signal at 1425 kc., set the dial indicator to 1425 kc., and adjust the trimmers on the variable condenser (C5, C11) for maximum response.
- 3. Radiate a 600 kc. signal and tune in the signal on the receiver. Adjust the loose outside turn of the loop antenna for maximum response. This loose turn may be moved to either side of the center. Fasten it in the position which gives maximum response.
- 4. Repeat steps (2) and (3) until no further improvement is evident.


FREQUENCY RANGE: 540-1620 kc.

PIN NUMBER TUBE 8 1 2 3 6 4 5 12SA7 *-10 *-1.6 89 89 *-1.6 12SK7 89 89 *-1.6 ***-0**.5 12SQ7 *-0.7 37.5 50L6 110 6.2 89 116 117 35Z5 116

VOLTAGE ANALYSIS

The voltage readings are d-c measurements taken from B- (line switch) to the indicated tube-socket pin. A 1000 ohm-per-volt meter should be used for all readings except those indicated by an asterisk (*), which should be taken with a vacuum-tube volt-meter (adjusted to measure d-c). These readings were obtained with a power input of 117 volts, 60 cycles a.c. Measurements made with 117 volts d.c. input will be lower than those given

above. Take readings with the volume control set at minimum and the variable condenser in the closed (maximum capacity) position.

smaller variable condenser section. The 600 kc oscillator core adjustment is the brass screw protruding from the end of the oscillator coil.

The loop antenna acts as the antenna coil. The trimmer for the loop (C3) is located on the larger section of the variable condenser.

	PIN NUMBER									
TUBE	1	2	3	4	5	6	7			
1R5		67.5	40	*-7.0		*-0.3	1.5			
1T4	······································	67.5	40			*-0.3	1.5			
1\$5			*-0.35	*16.5	*39	*-0.3	1.5			
3 S 4	1.5	65	*-7.0	67.5		65	1.5			

Voltages marked (*) are taken with vacuum-tube voltmeter.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

3.3 meg., ¹/₄ watt resistor... 1 meg., ¹/₄ watt resistor....

0.47 meg., ¹/₄ watt resistor.... 4.7 meg., ¹/₄ watt resistor..... 10 meg., ¹/₄ watt resistor.....

Volume control

R2

R3

R6

R8 R9

R4, R7 R5

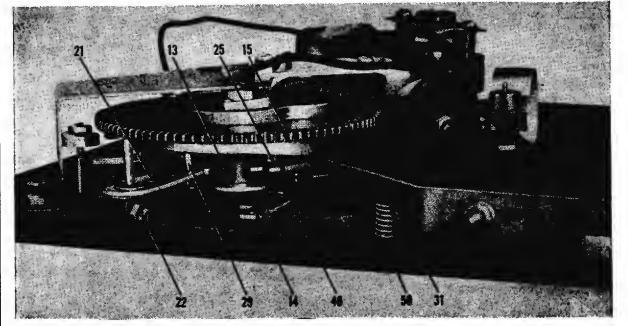
MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS RECORD CHANGER PART No. 819003 EMERSON RADIO

AUTOMATIC OPERATION

Loading

- 1. Turn the set on and the volume up and set the selector knob indicated on the switch housing. in the position for phonograph operation.
- Turn the Spindle Cap (2) until is is as completely OUT Shut Off 2. OF LINE with the Spindle (3) as possible.
- 3. If ten-inch records are to be played, rotate the Record Support (4) to the left, and for twelve-inch record operation rotate the Record Support to the extreme right.
- 4. Insert a maximum of 12 ten-inch records or 10 twelve-inch records on the Spindle shoulder and Record Support.
- 5. Swing the Hold-Down Finger (5) so that it rests on the top Unloading record.

Starting


To start operation, push the Starting Switch (6) to the ON position, then depress the switch button as indicated for reject.

Reject Records

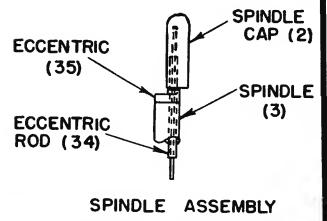
To reject a record, depress the Starting Switch button as

- Remove any records remaining on the Record Support.
- Depress the Starting Switch as indicated for reject and allow 2. the Pickup Arm (1) to reset on the record.
- 3. Gently lift the Pickup Arm and return it to the Rest Post (8).
- 4. Push the Starting Switch to the OFF position.

- 1. Rotate the Spindle Cap until it is aligned with the Spindle.
- 2. Turn the Hold-Down Finger aside.
- 3. Lift the records, tilting them slightly to clear the Record Support.

MANUAL OPERATION

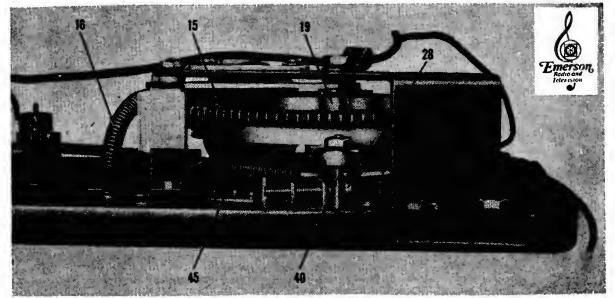
Starting


- 1. Turn the set on and the volume up and set the selector knob in the position for phonograph operation.
- 2. Make sure the Spindle Cap is aligned with the Spindle and place the record over the Spindle and on the Turntable.
- 3. Push the switch to the ON position.
- 4. Place the Pickup Arm on the outer edge of the record to start operation.

Shut Off

- 1. Allow Pickup Arm to complete its cycle and reset on the record. Gently lift the Pickup Arm and return it to the Rest Post.
- 2. Push the Starting Switch to the OFF position.

3. Do not overload the changer. The maximum load is either 12 ten-inch or 10 twelve-inch records. Use modern records in good condition.


MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS OPERATING DESCRIPTION

selection.

Startina

thus supplying power to rotate the turntable, automatic cycling (15).

This record changer is an automatic cam-type changer, may be started by depressing the button. This movement pushes featuring single-button control and eccentric-spindle record the Trip Bar (31) forward, causing engagement with the Carrier Lever (14) and its attached cycling Drive Wheel (10). The latter thus contacts the rim of the turntable and rotates with it. This motion is transmitted through the Flexible Coupling (16) After the Single Control Button (6) has been turned ON, to the Worm Drive (17), which in turn drives the Main Cam

Cycling

A single revolution of the Main Cam results in complete automatic cycling of the changer. This includes selection of a Positive Trip Action record from the stack, lifting the Pickup Arm from its rest, and setting the needle on the edge of the record. Upon completion Lever (21) hits the Positive Trip Screw (28) mounted on the of the revolution, the Automatic Trip Cam (13) engages with the block on the Trip Lever and pulls the Carrier Lever (14) back to its original position so that the cycling Drive Wheel (10) is no longer engaged with the turntable rim.

Record Feed

The lower side of the Main Cam (15) controls record selection. Motion of the Feed Cam Roller (19) about the cam results in a backward and forward movement of the Feed Sector Lever (18), thus engaging the Record Feed Pinion (20). This in turn causes the Eccentric (35) to first rotate to the proper position for record selection and to then return, allowing the record to drop over the Spindle.

Pick-Up Arm Movement

The upper side of the Main Cam (15) controls Pick-Up Arm (1) movement. LIFT is imparted by motion of the Lift Pin along the vertical edge of the cam as the latter rotates. DIREC-TION is controlled by engagement of the Main Cam with the Sweep Lever Pinion (29). The Sweep Lever (21) is attached to the Pick-Up Arm by means of a clamp (22) around the Pick-Up Arm Pivot Sleeve (23). A boss projecting from the upper side of the Main Cam displaces the Stop Lever (25) at

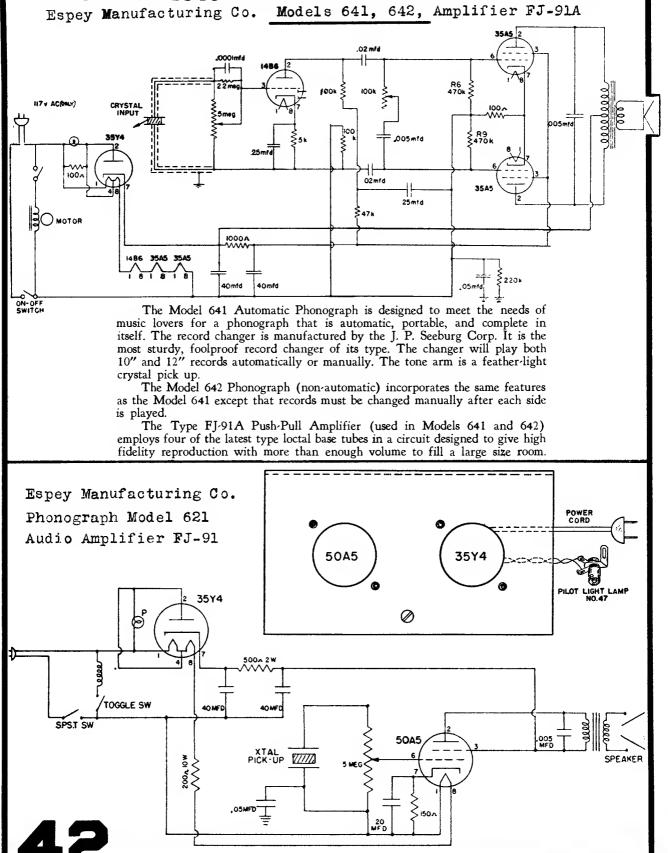
the end of the change cycle, thus permitting the Pick-Up Arm to proceed across the record.

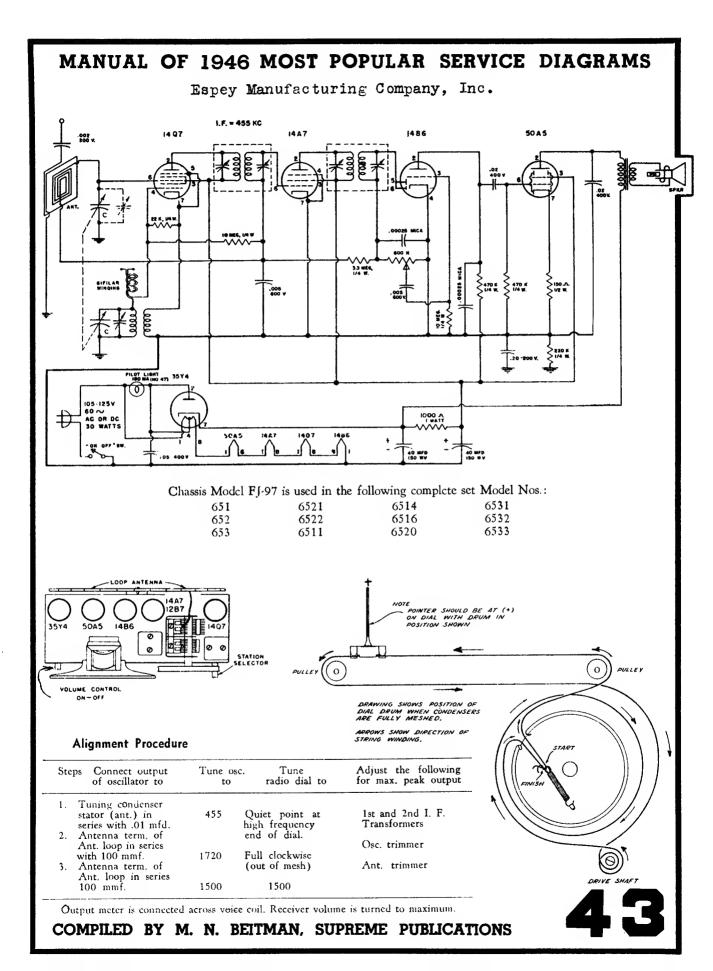
As the Pick-Up Arm approaches the Spindle, the Sweep Trip Lever. This action reengages the drive wheel with the turntable rim and starts a new cycle.

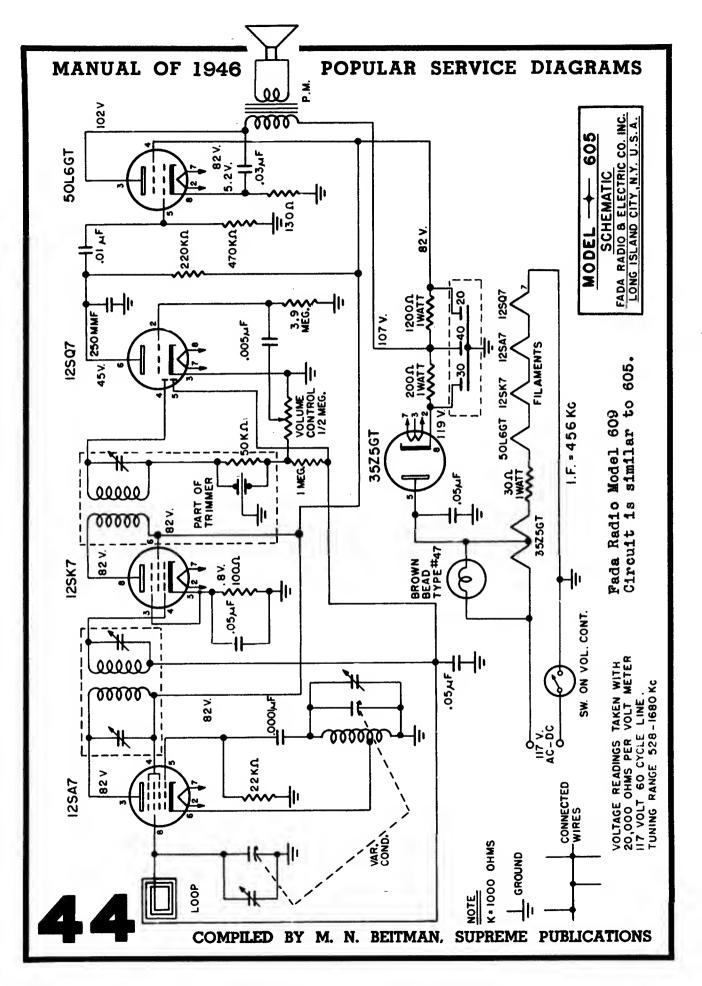
Ten-Inch or Twelve-Inch Operation

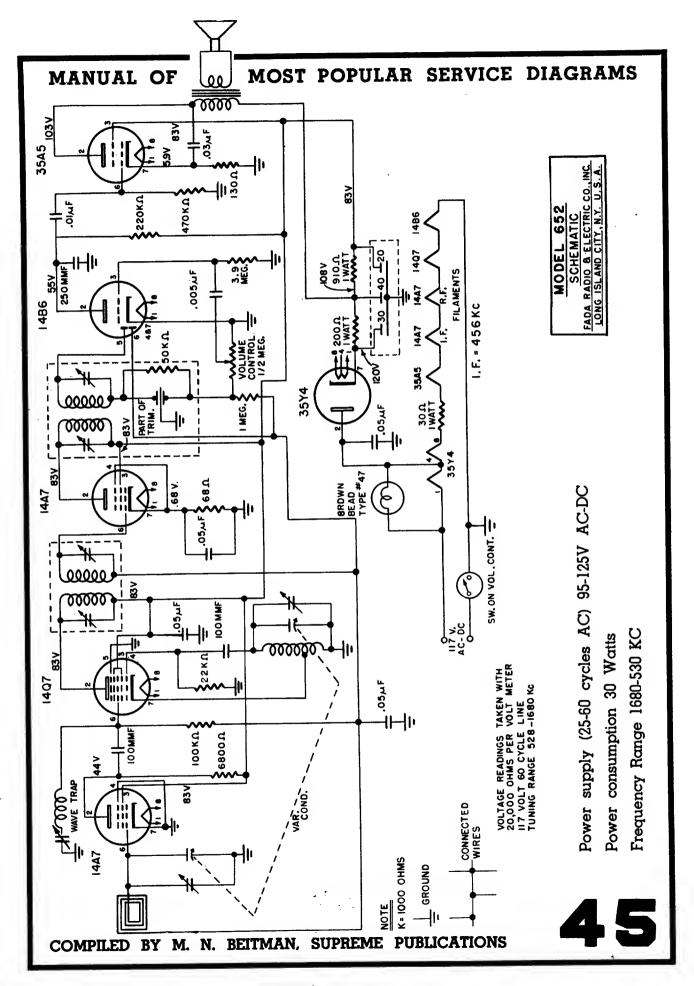
Adjusting the Record Support (4) to the ten-inch or twelveinch position lowers the Selector Rod (40) a definite degree. The length of the extension of this rod determines the positioning of the Stop Lever (25). The latter is the means of regulating the distance the Sweep Lever (21) and its attached Pick-Up Arm travel before the arm is lowered to the edge of the record.

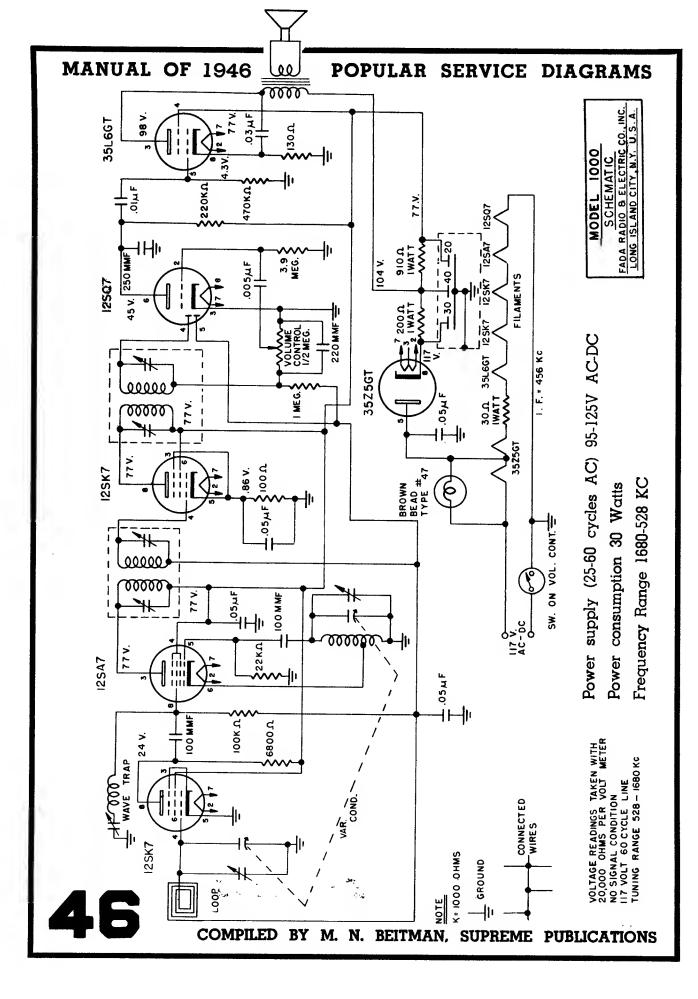
Positive Trip

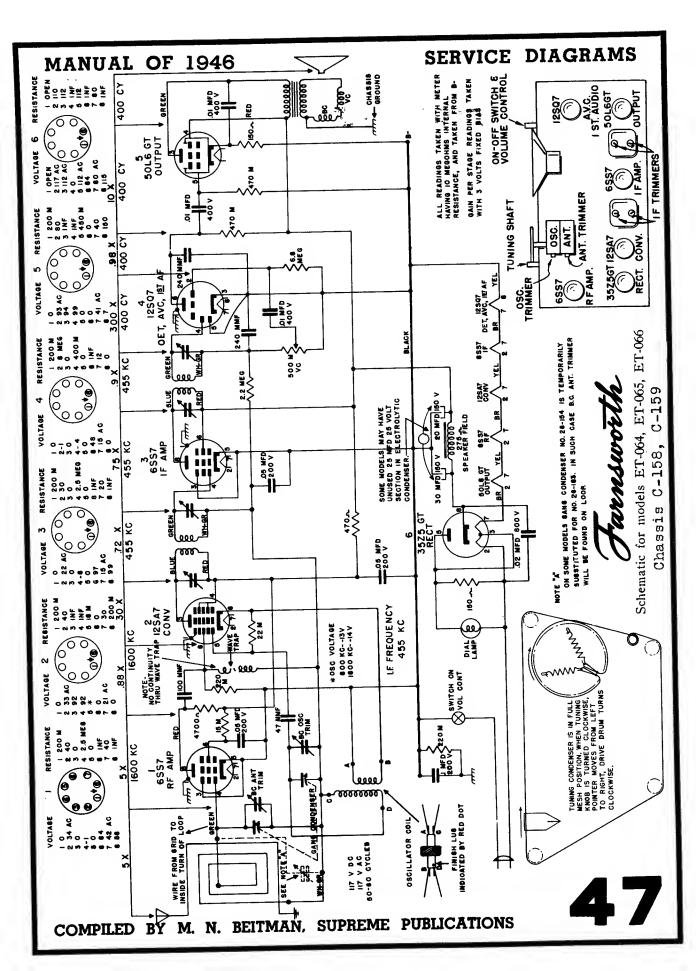

The tripping point of the changer may be readjusted by positioning of the Positive Trip Screw (28). Turn the screw clockwise to delay tripping and counter-clockwise to trip earlier in the playing cycle.

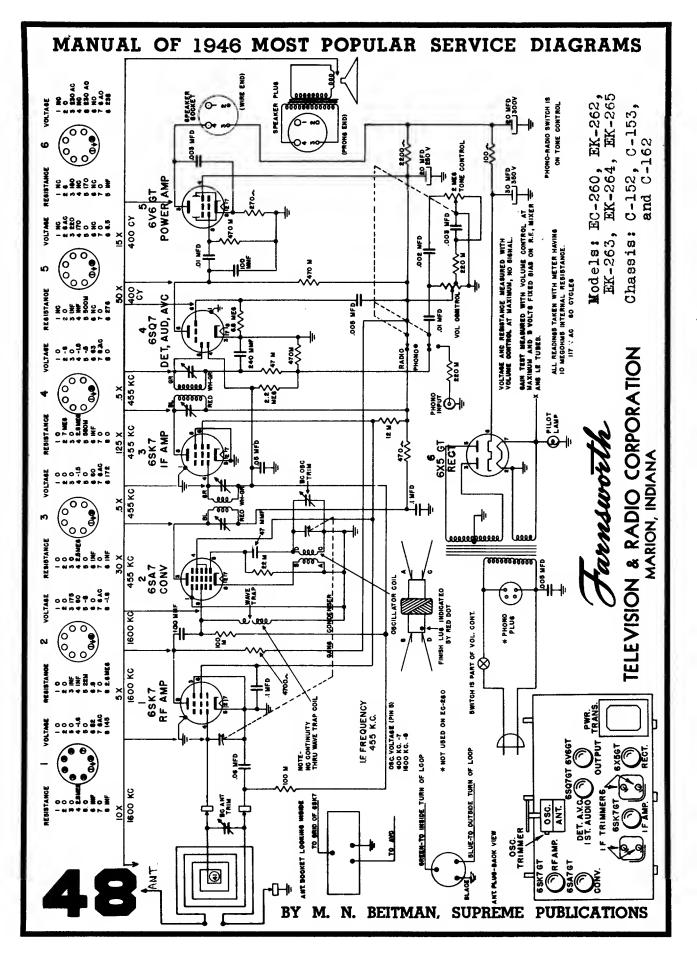

Pick-Up Arm Drop Point

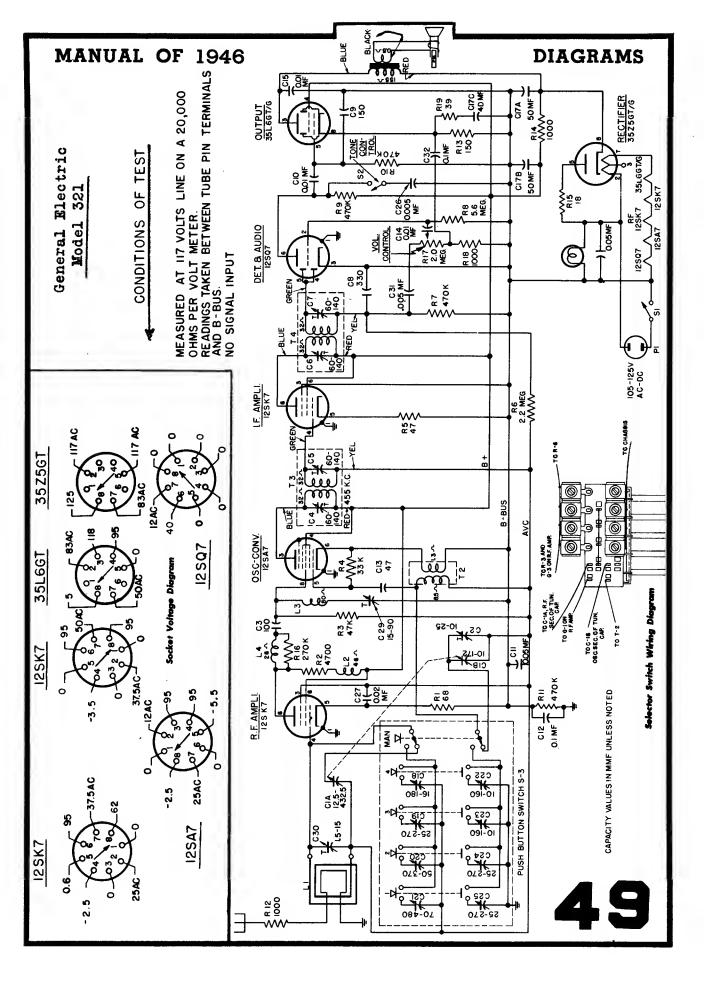

An external strain exerted on the Pick-Up Arm may alter the drop point. To adjust, loosen the screw on the Sweep Lever Clamp (22) slightly and reposition the Pick-Up Arm with respect to the Sweep Lever (21).





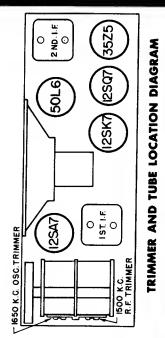


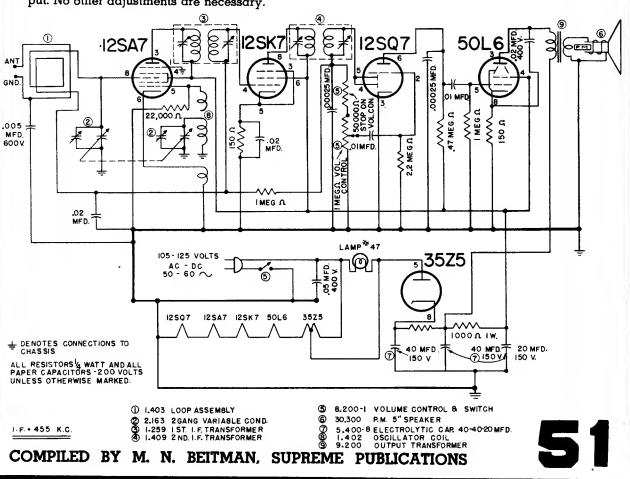


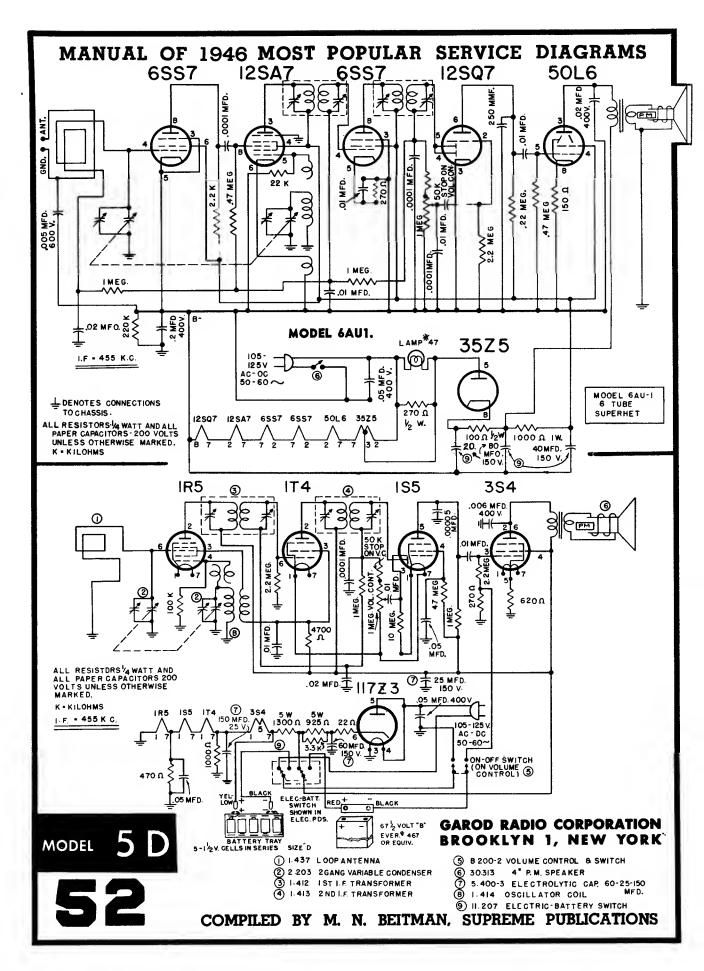


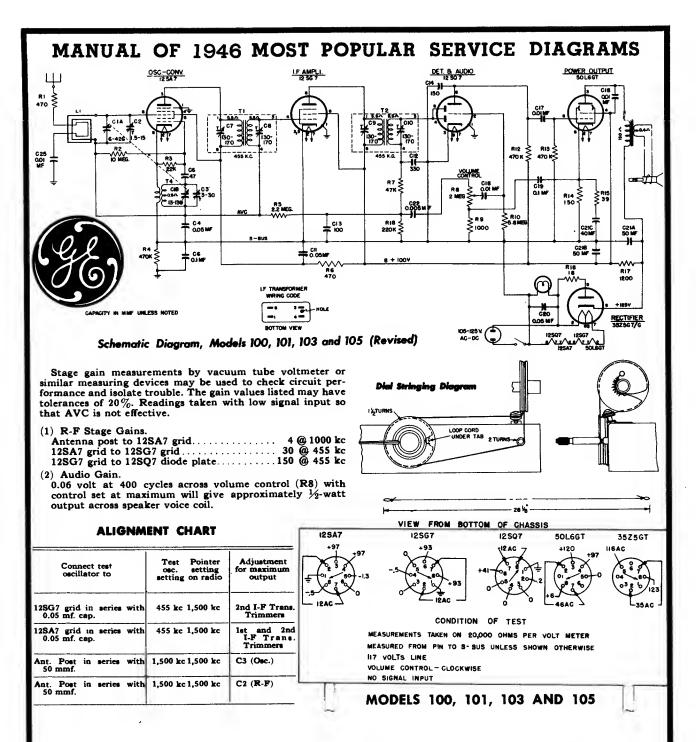
MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS ALIGNMENT PROCEDURE

• Volume control-Maximum all adjustments.


• Connect B- of radio chassis to ground post of signal generator through .1 Mfd. condenser.

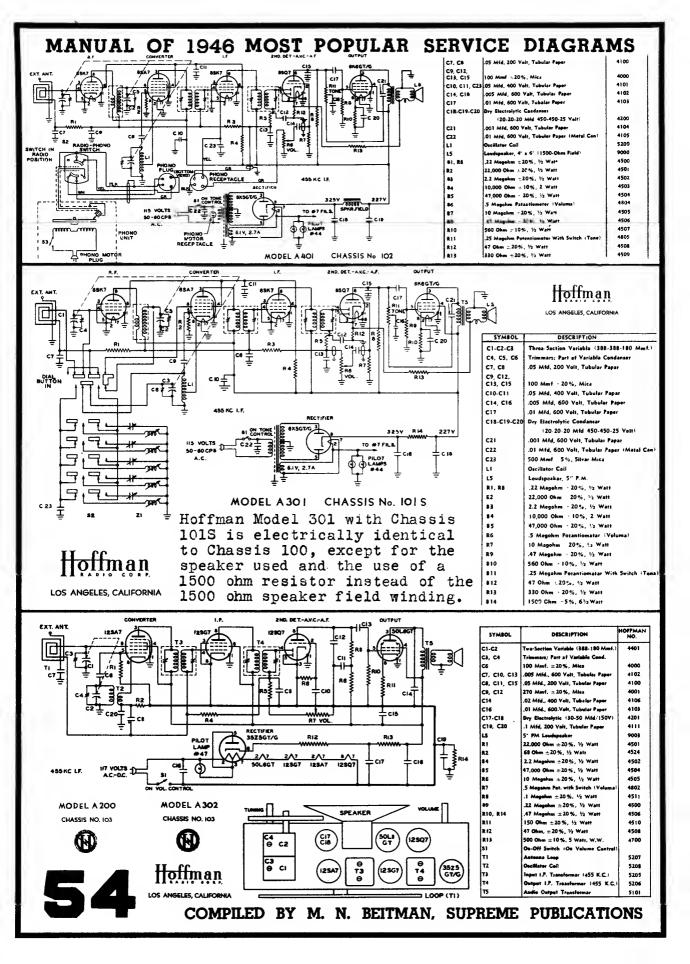

				generator through .1 Mild. C	
BAND	SIGNAL GENER Frequency Setting	ATOR Dummy Antenna	Connection to Radio	Variable Condenser Setting	Trimmers Adjusted to Maximum
I. F.	455 Kc.	.1 MFD.	Grid of 12SK7 2nd I. F.	Rotor full open (Plates out of mesh)	Two trimmers on top of Output I, F.
	455 Kc.	.1 MFD.	Grid of 12SA7 Converter	Rotor full open (Plates out of mesh)	Two trummers on top of Input I. F.
BROAD-	1720 Kc.	.1 mmf.	Grid of 12SA7	Rotor full open (Plates out of mesh)	Osc. trimmer C21 See vo ¹ tage chart view
CAST BAND	1400 Kc.	200 mmf.	External Antenna and B	Set Dial at 1400 K. C.	, Ant. trimmer C20 See voltage chart view
	The loop antenna si	hould be connected to t	he radio and in its pr	oper position when making	all adjustments
	The loop antenna of				IDENSERS
VOLTN	REMENTS TAKEN W	V OF CHASSIS VITH A HIGH RESISTAN TO DESIGNATED POIN		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ang Condenser Complete with Assembly and Ant. and Osc. ers 1 Volt Tubular Condenser 3 Volt Tubular Condenser 1
5 Ø			S C	C3, C7, C12, C13, C14 150 C3, C7, C12, C13, C14 $.0$	c Filter Condenser. 1 c Filter Condenser. 20 Mfd. x ; 20 Mfd. x 150 V.; 40 Mfd. V. 150 V.; 40 Mfd. 1 V. 150 V.; 50 Mfd. 20 Mfd. 1 V. 150 Mica Type Condenser. 20% 5
35 Z5 GT	⁰⁻⁰ 125Q7	_	2SK7	RE	SISTORS
		80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		R6 10M Ohm R10 3 Megohn R3 20M Ohm R18 150 Ohm R11 200 Ohm	ontrol and Switch (1 Megohui)1 1/3 Watt Resistor- 10% 1 1/3 Watt Resistor- 20% 1 1/3 Watt Resistor- 20% 1 -1/3 Watt Resistor- 10% 1 -1/4 Watt Resistor- 10% 1 1/4 Watt Resistor- 20% 1 1/3 Watt Resistor- 20% 1 1/3 Watt Resistor- 20% 1 1/3 Watt Resistor- 20% 1 1/3 Watt Resistor- 10% 1
	Coronado 43-8351 &			R9 200 Ohm- R1, R8 IM Ohu R2, R5 150M Ohn	1-13 Watt Resistor-10%
	12SA7 CONVERTER	I2SK7	12SK7	12SQ7 DET. AVC. IST. AUDIO	35L6GT POWER OUTPUT
5(TECHNICAL DATA TUNING RANGE 530-1720 K.C. SENSTIVITY ID MICROVOLTS AVE. SELECTIVITY S6KC. AT 1000 X OUTPUT .750 WATTS UNDISTORTED IN VOICE COIL POWER CONSUMPTION 35 WATTS LF. 455 K.C
		OMPILED BY	Y M. N. BE	ITMAN, SUPREI	ME PUBLICATIONS


MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS GAROD RADIO MODEL 5A2


ALIGNMENT: Should it become necessary at any time to check the alignment of this receiver, proceed as follows:

- (1) Set the Signal Generator to 455 KC and connect to the stator lug on the rear section of the Variable Capacitor. Connect the Signal Generator Ground lead to the chassis. Connect a suitable output meter across the Speaker Voice Coil Connections. Turn the Volume Control to the maximum position. Turn the Variable Capacitor to the extreme clockwise position.
- (2) Adjust the trimmers located at the top of the first and second I. F. Transformers for maximum output as indicated on the Output Meter.
- (3) Loosely couple the Signal Generator lead to the Loop and set to 1650 KC.
- (4) With the Variable Capacitor set at the extreme clockwise position, tune in the 1650 KC signal by means of the Oscillator Trimmer on the Variable Capacitor (front section).
- (5) Set the Signal Generator to 1500 KC and turn the Tuning Control so that this frequency is indicated on the dial. Adjust the Antenna Trimmer on the Variable Capacitor (rear section) for maximum output. No other adjustments are necessary.

Production changes were made to all Models 100, 101, 103 and 105 radios having serial Nos. 5000 and over.


(SCHEMATIC DIAGRAM)—A corrected schematic is printed. Changes were made as follows:

(1) C18 connects between the output plate and screen instead of between plate and ground.

(2) The plate and screen filter (C11, R6) is moved from the IF amplifier circuit to the converter plate and screen circuit.

(3) The filament connections (Pins 2 and 7) to the 12SA7 converter tube are interchanged.

<u>HOWARD radio company</u>

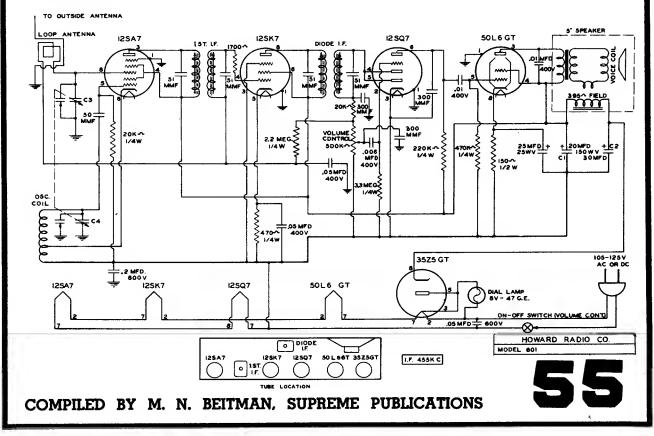
M O D E L - 901

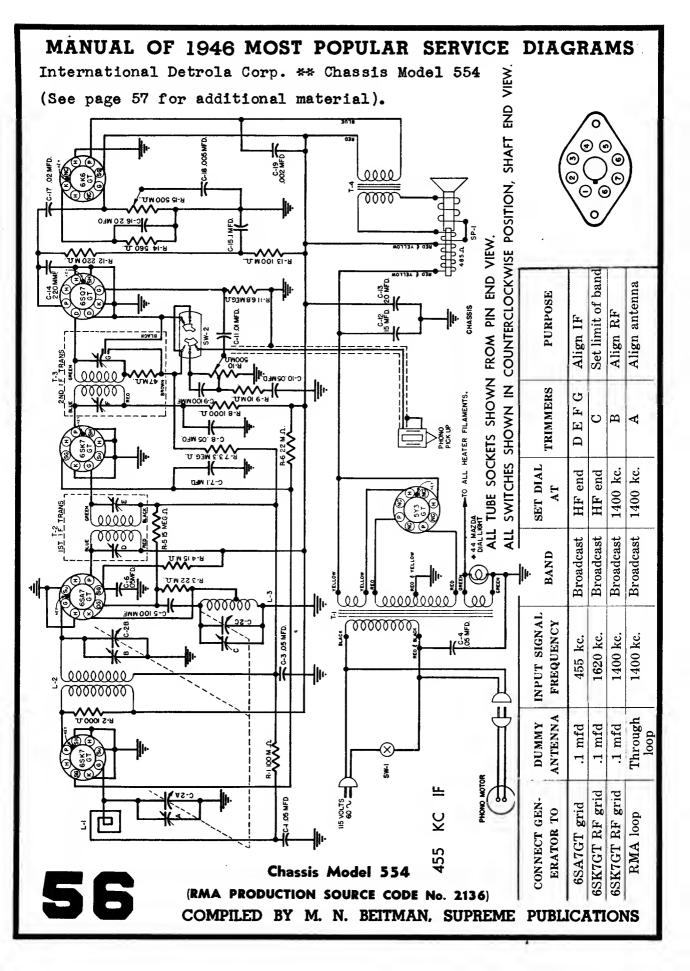
SOCKET VOLTAGE READINGS:

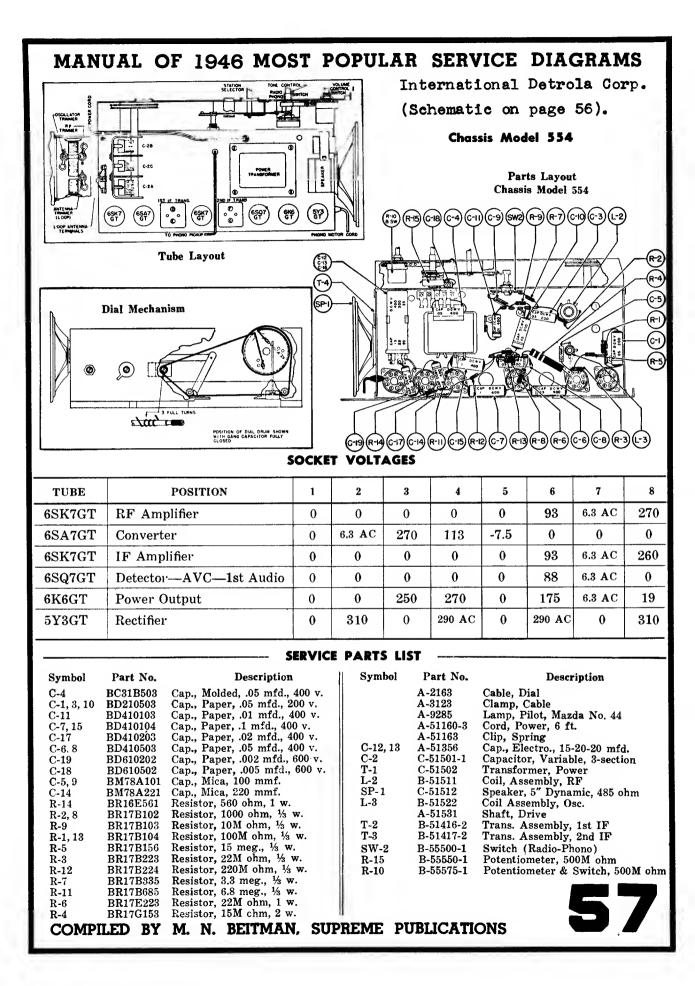
All voltages taken from the back of the AC switch to the socket contacts with a 20,000 ohm per volt D.C. meter and the line voltage fixed at 117 volts A.C.

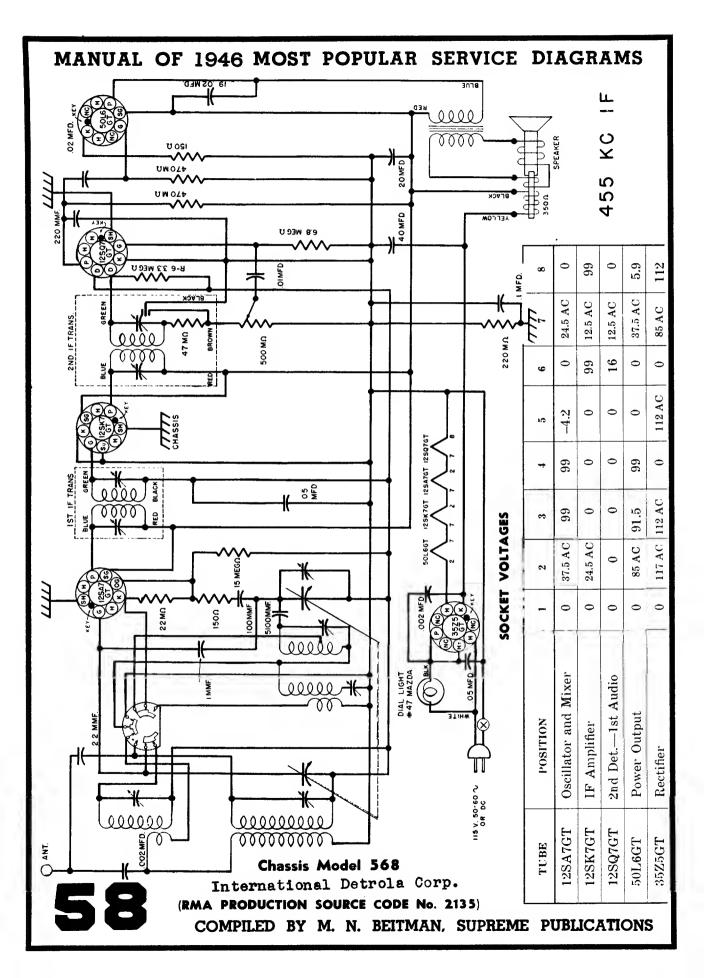
ALIGNMENT INFORMATION Each 455 KC I. F. coil has an Iron Core adjustment protruding from the top and the bottom of the I. F. can.

TUBE	FUNCTION	CATH- ODE	SCR. GRID	PLATE	OSC. PLATE
125 A 7	Mixer		92	92	92
12SK7	I.F.Amp.	3	92	92	
12SQ7	Det.			44	
50L6GT	Output	5.8	92	85	

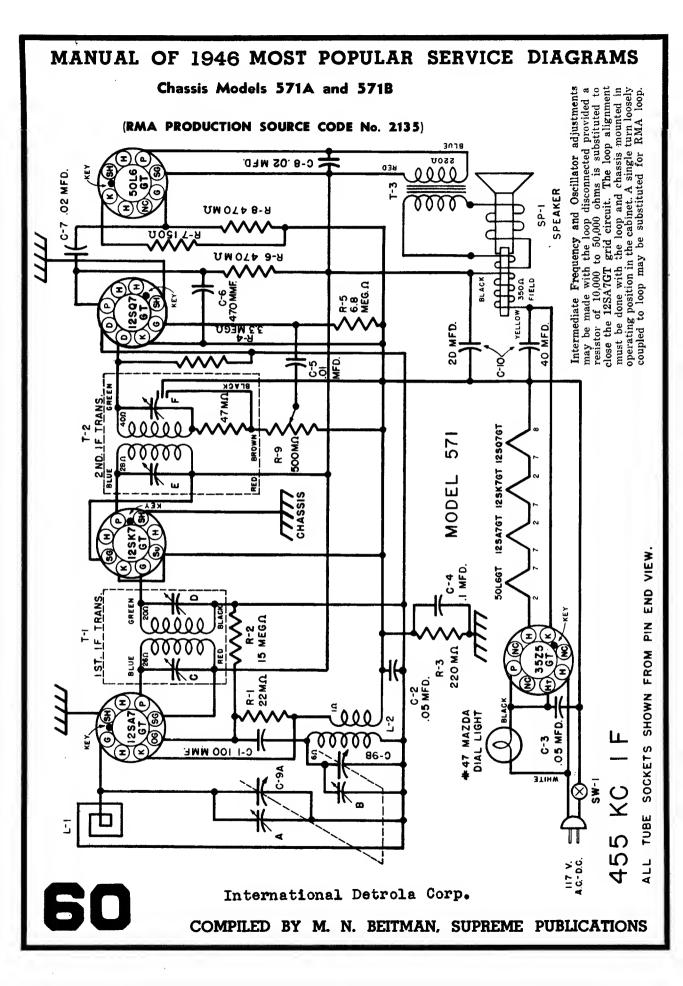

Look beneath the chassis to reach the lower I. F. adjustments. Repeat the I. F. alignment operation several times to insure accuracy.

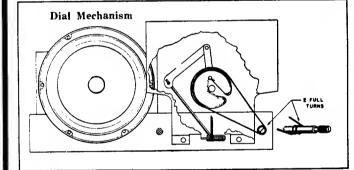

Add or remove resistance in the cathode circuit of the 12SK7 tube as the I. F. gain indicates.

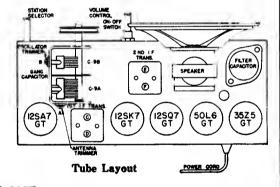

The wire lead running from the loop aerial between the I. F. coils and the gang is important in its placement. Dress this wire tightly to the chassis.


Set dial at 1400 KC. and adjust oscillator trimmer which is located on back of variable condenser, then peak antenna stage trimmer on front section of condenser to 1400 KC. No adjustment is required at the low frequency end.

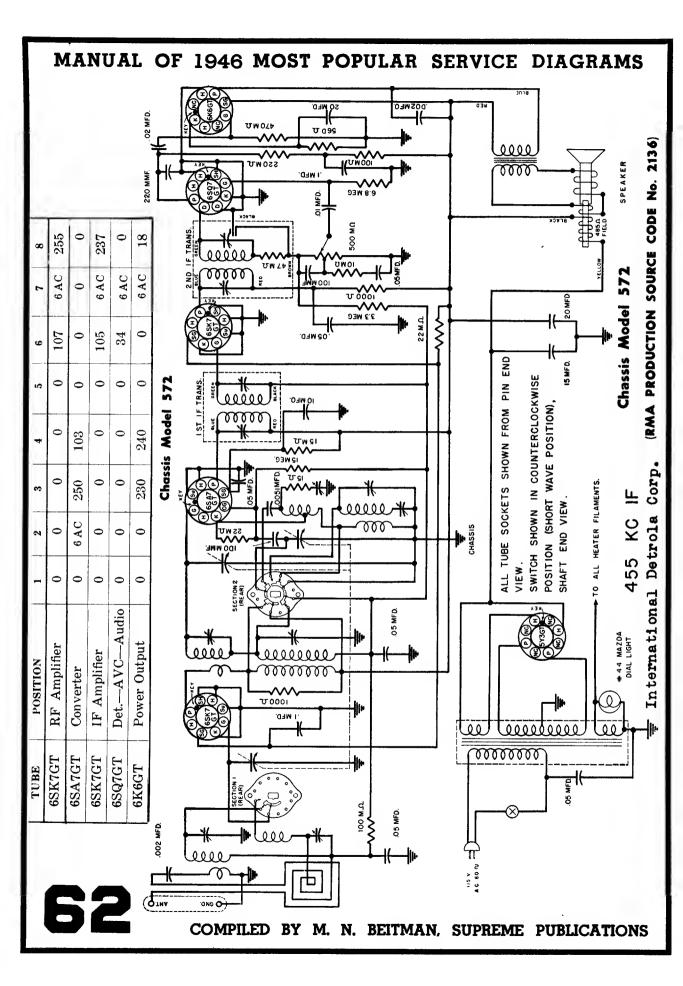

The filter condenser has a common negative, but note it does not return to ground. and is insulated from the chassis.

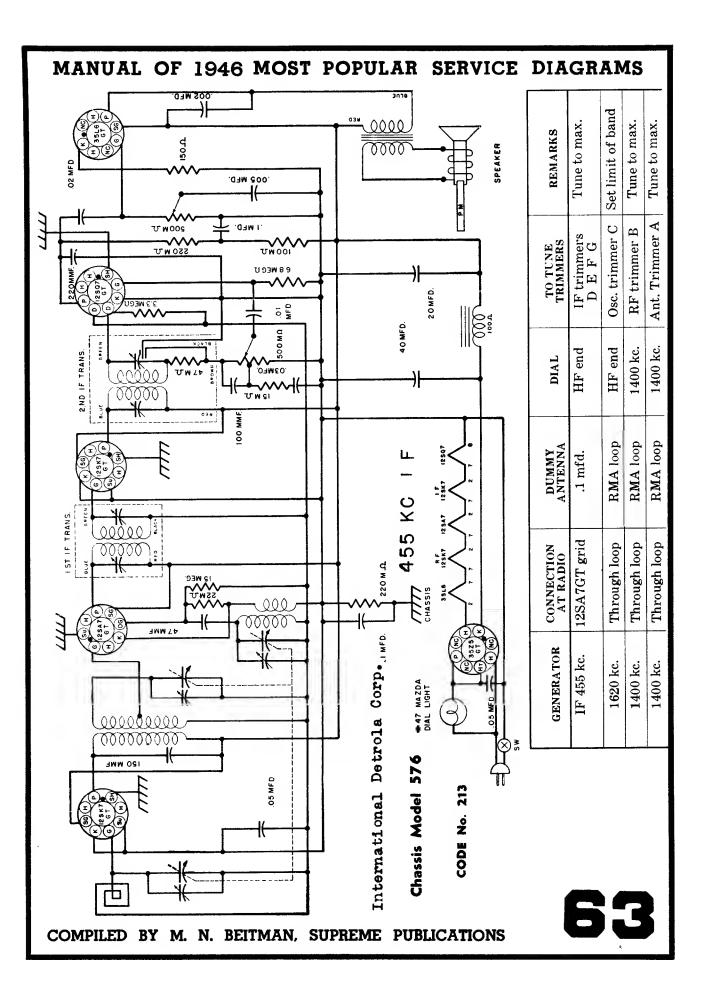


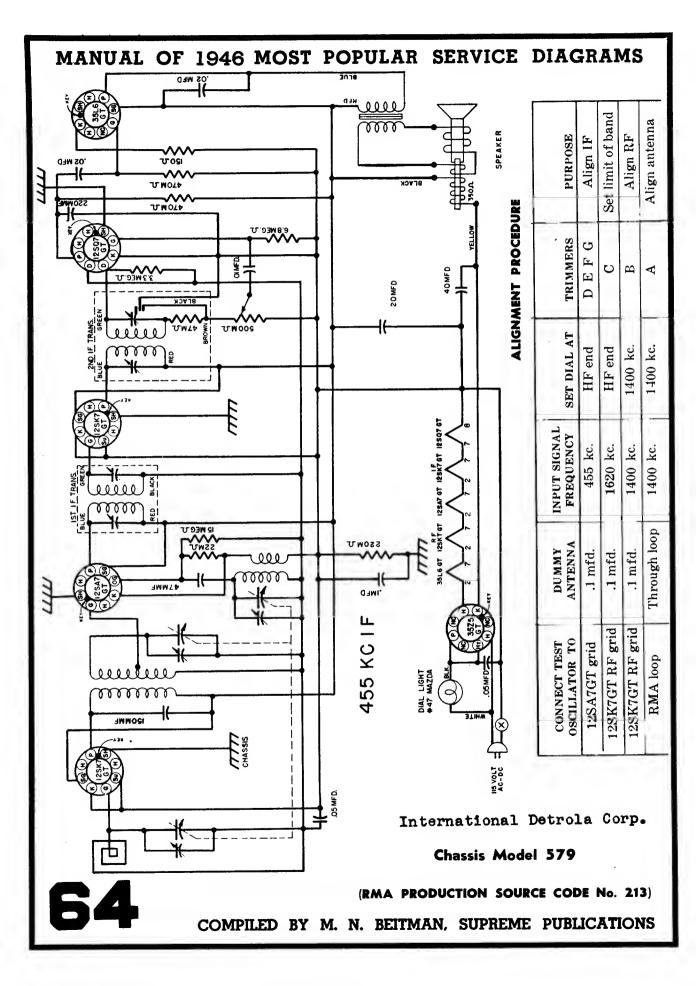




	VAL OF 194 nt procedure	6 MOS Chassis M					ICE I. ternati			
GENERATOR	CONNECTION AT RADIO		DUMMY ANTENNA		DIAL		TO TUNE TRIMMERS		REMARKS	
IF 455 kc.	12SA7GT grid	.1 mfc	.t.	HF end		1.	IF trimmers CDEF		Tune to max.	
1620 kc.	Through loop	RMA loop		H	F end	Os	Osc. trimmer		Set limit of band	
1400 kc.	Through loop	RMA lo	юр	1400 kc.		An	Ant. trimmer A		Tune to max	
	<u> </u>	5(CKE	T VOLT	AGES					
TUBE	POSITION	1	1	2	3	4	5	6	7	8
12SA7GT	Osc. and Mixer		0	37.5 AC	99	99	-4.2	0	24.5 AC	0
12SK7GT	IF Amplifier		0	24.5 AC	0	0	0	99	12.5 AC	99
12SQ7GT	2nd Det.—1st Audio		0	0	0	0	0	16	12.5 AC	0
50L6GT	Power Output		0	85 AC	91.5	99	0	0	37.5 AC	5.9
35Z5GT	Rectifier		0	117 AC	112 AC	0	112 AC	0	85 AC	112

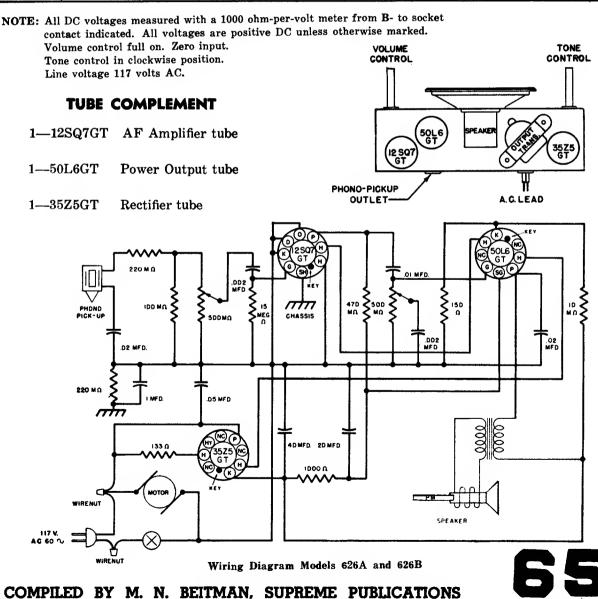

NOTE: All DC voltages measured with a 1000 ohm per volt meter from ON-OFF switch (--B) to socket contact indicated. All AC voltages are measured from ON-OFF switch (--B) to socket contact indicated.

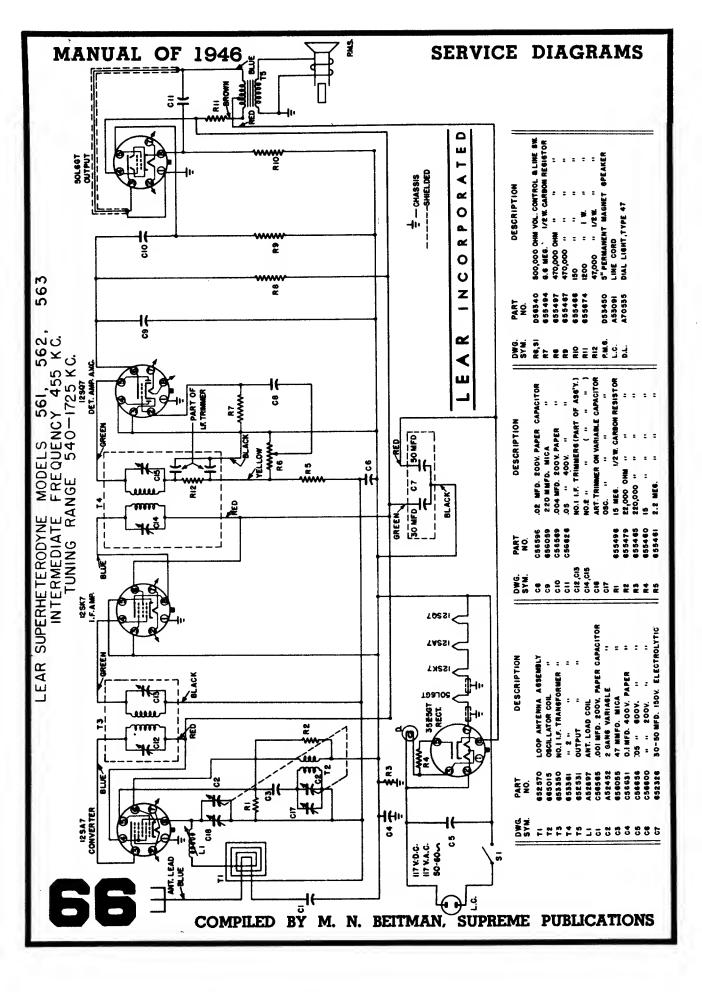




	Symbol	Part No.	Description	Symbol	Part No.	Description
	C-1	BM78A101	Cap., Mica, 100 mmf.	T-2	B-51011	Trans., Assembly, 2nd IF
1	C-2	BD210503	Cap., Paper, .05 mfd., 200 v.	SP-1	C-51014	Speaker, 5" Dynamic, 350 ohm.
	C-3	BC31B503	Cap., Mold., Paper, .05 mfd.		A-2163	Cable, Drive
	C-4	BD410104	 Cap., Paper, .1 mfd., 400 v. 		A-6158	Lamp, Pilot No. 47 Mazda 6.3 v.
	C-5	BD410103	Cap., Paper, .01 mfd., 400 v.		A-51160-1	Cord, AC-DC Line, 6 ft.
	C-6	BM78A471	Cap., Mica, 470 mmf.		B-51162-1	Shaft, Drive
	C-7, 8	BD410203	Cap., Paper, .02 mfd., 400 v.		A-51163	Clip, Spring
	C-9	C-51155-1	Cap., Variable, 2 Section		B-51177	Bracket Assembly, Dial
1	C-10	A-8948	Cap., Electro., 40-20 mfd., 150 v.		A-51202	Link, Insulating
	L-1	B-51243	Loop, Antenna		B-51204-1	Pointer
.1	L-2	B-51159	Coil, Osc. Assembly		A-51206	Arm, Dial Drive
1	R-1	BR17B223	Resistor, $22M$ ohm $1/3$ w.		A-51237-1	Paper Back, Dial
1	R-2	B R 17B156	Resistor, 15 meg. $1/3$ w.		D-51240-1	Cabinet (571-1)
	R-3	BR17B224	Resistor, 220M ohm 1/3 w.		A-51241-2	Knob
0	R-4	BR17B335	Resistor, $3.3 \text{ meg. } 1/3 \text{ w.}$		C-51242-1	Dial, Glass Indicator
	R-5	BR17B685	Resistor, 6.8 meg. $1/3$ w.	li l		
	R-6, 8	BR17B474	Resistor, 470M ohm $1/3$ w.	1		
	R-7	BR16C151	Resistor, 150 ohm. 1/2 w.			
	R-9	B-9051-1	Control, Vol. & Sw. 500M ohm.			
	T-1	B-51010	Trans., Assembly, 1st IF	(i		
	COM	ADILED 1	BY M. N. BEITMAN, SUPRI	EME PU	BLICATIO	NS C

SERVICE PARTS LIST

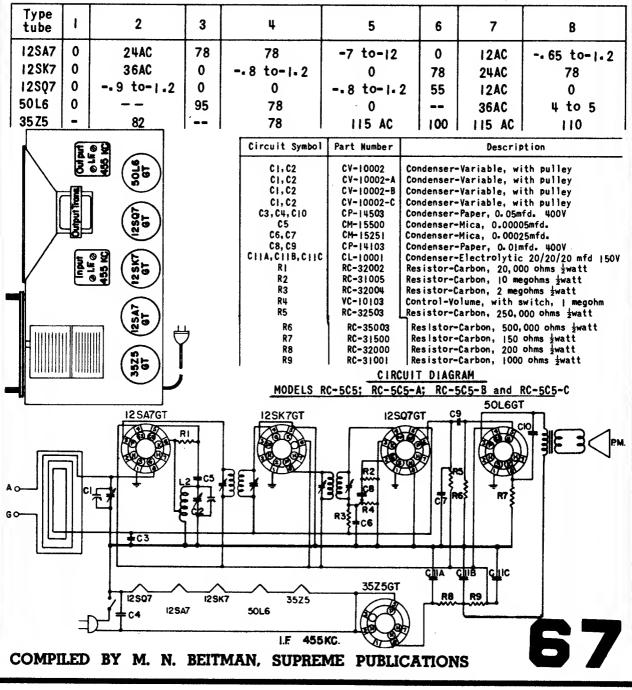

International Detrola Corp.

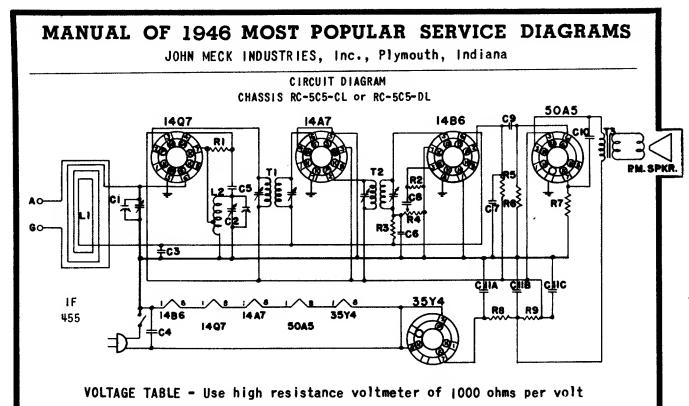

AUTOMATIC RECORD CHANGER AND AMPLIFIER MODELS 626A and 626B

(RMA PRODUCTION SOURCE CODE No. 213)

SOCKET VOLTAGES

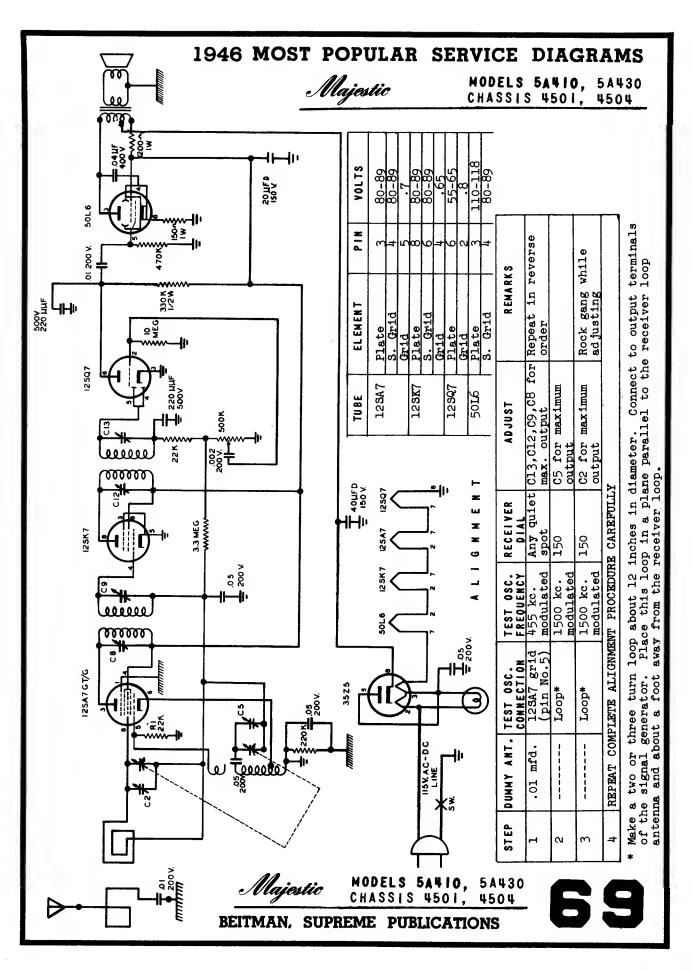
TUBE	POSITION	1	2	3	4	5	6	7	8
12SQ7GT	AF Amplifier	0	0	0	0	0	40	12 AC	0
50L6GT	Power Output	0	54 AC	118	125	0	0	12 AC	9.0
35Z5GT	Rectifier	0	85 AC	0	0	117 AC	125	54 AC	127

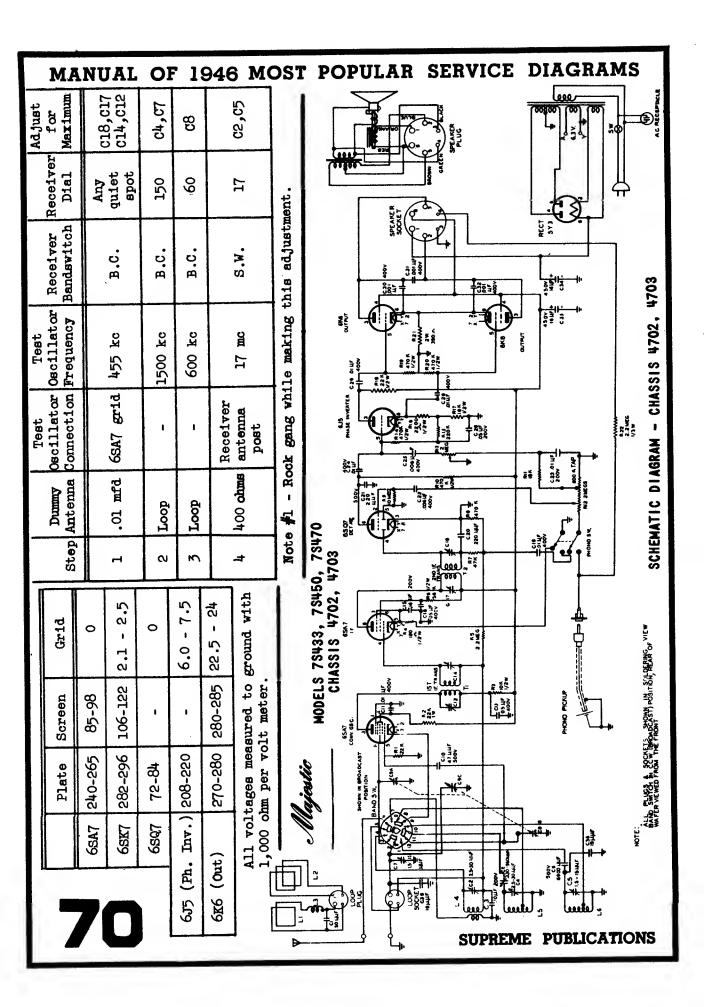


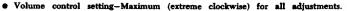


MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS JOHN MECK INDUSTRIES, Inc., Plymouth, Indiana

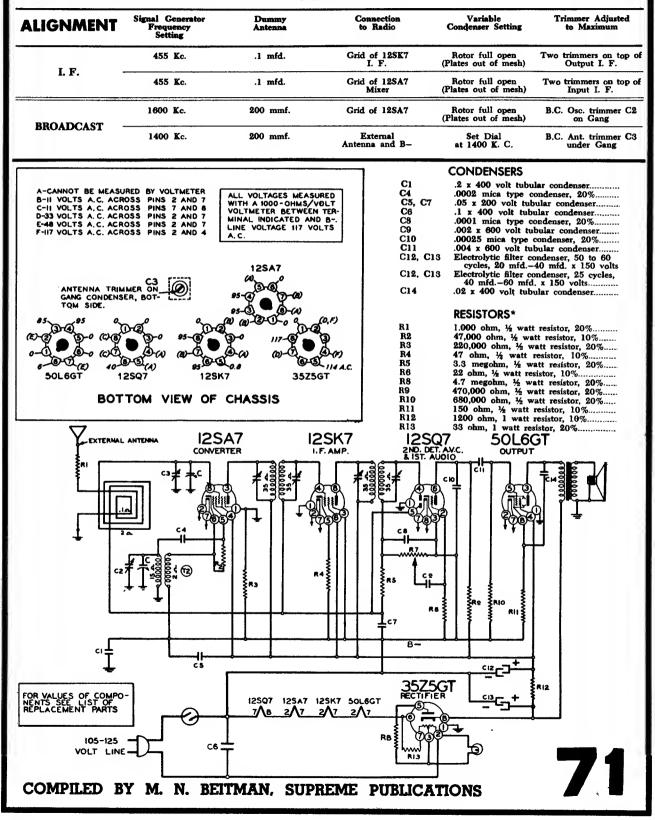
I.F. ALIGNMENT: The step-by-step routine given below should be carefully followed after reading the preceding instructions:

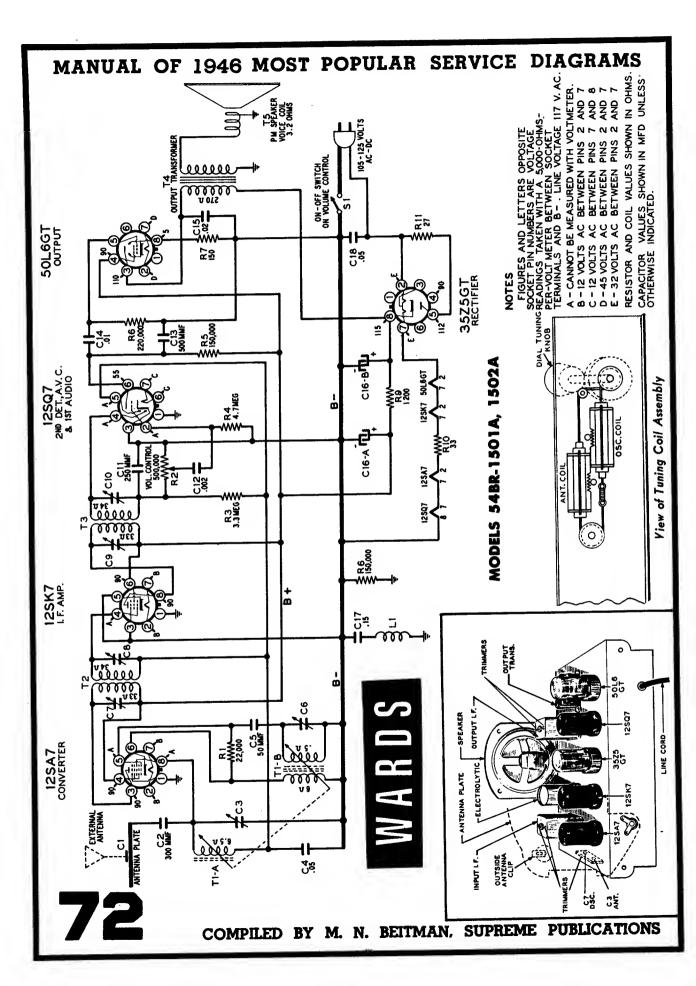

- The modulated oscillator must be tuned to 455 K.C. Connect the high side of the oscillator output to the lug on the R.F. section of the gang condenser. The low side of the oscillator is connected to the 2. chassis through a .OI condenser.
- Set the gang condenser of the radio to 1720 on the dial and turn the volume control on full. 3. 4.
- Adjust the four 1.F. trimmers tuning each carefully to get the maximum deflection of the output meter. Reduce the oscillator output if the output meter goes off scale.
- 5. Repeat all four adjustments since the adjustment of each I.F. trimmer may effect the others to a certain extent. VOLTAGE TABLE - Use high resistance voltmeter of 1000 ohms per volt

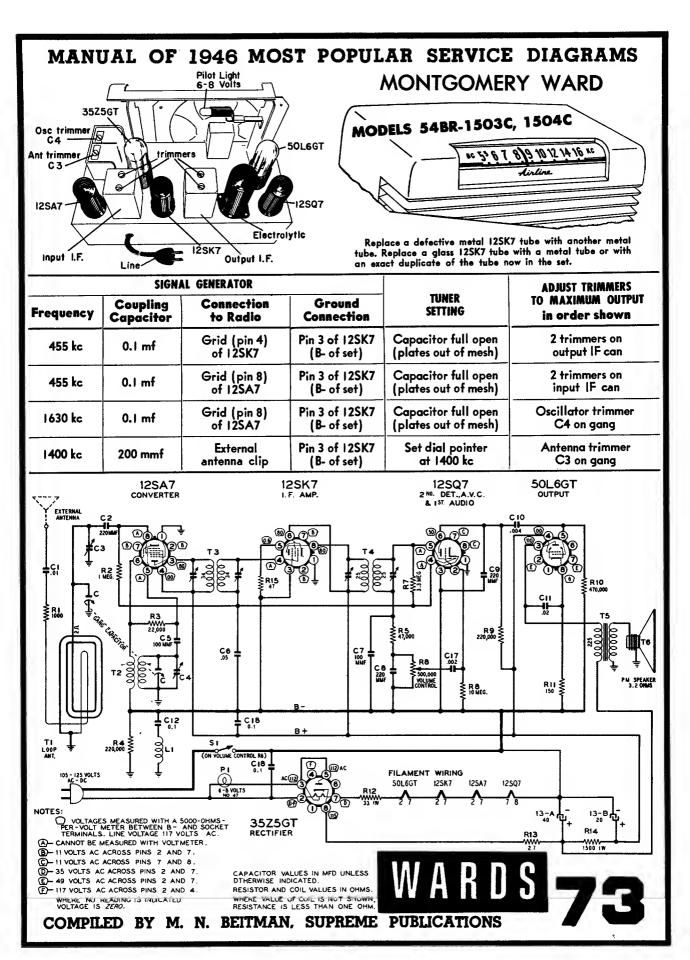


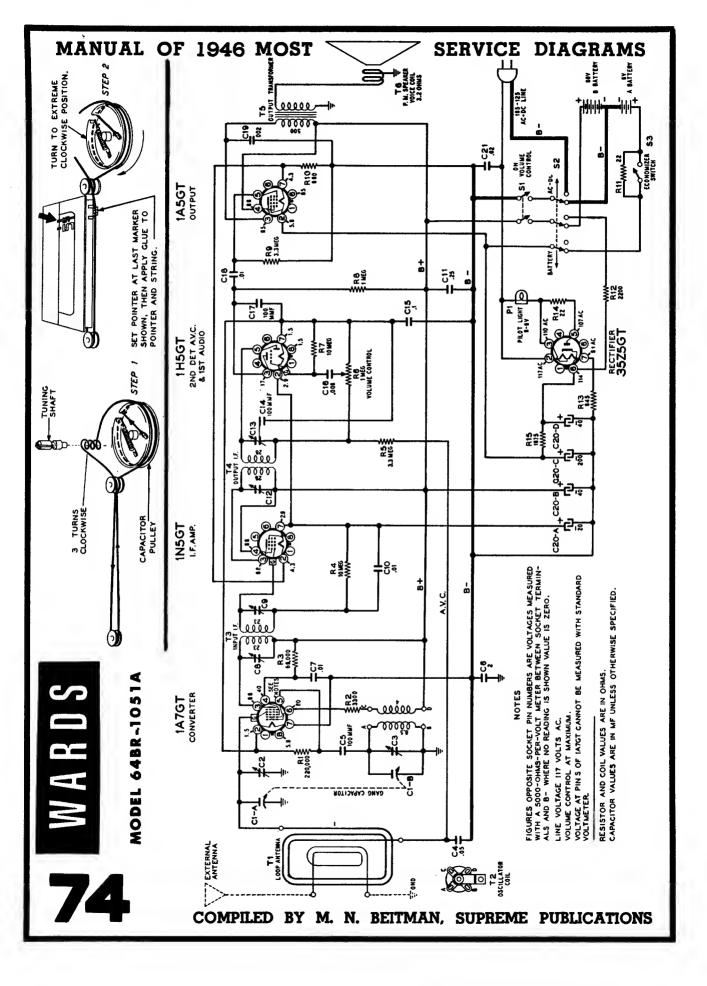

Type tube		2	3	ų	5	6	7	8
1407	24AC	78	78	-7 to-12	0	65 to-1.2	0	12AC
14A7	36AC	78	78	0	0	8 to-1.2	0	24AC
1486	0	55	9 to-1.2	0	8 to-1.2	0	0	12AC
50A5	82AC	95	78			0	4 to 5	36AC
35Y4	1 1 5AC	II 5AC	78		100	••	110	82AC

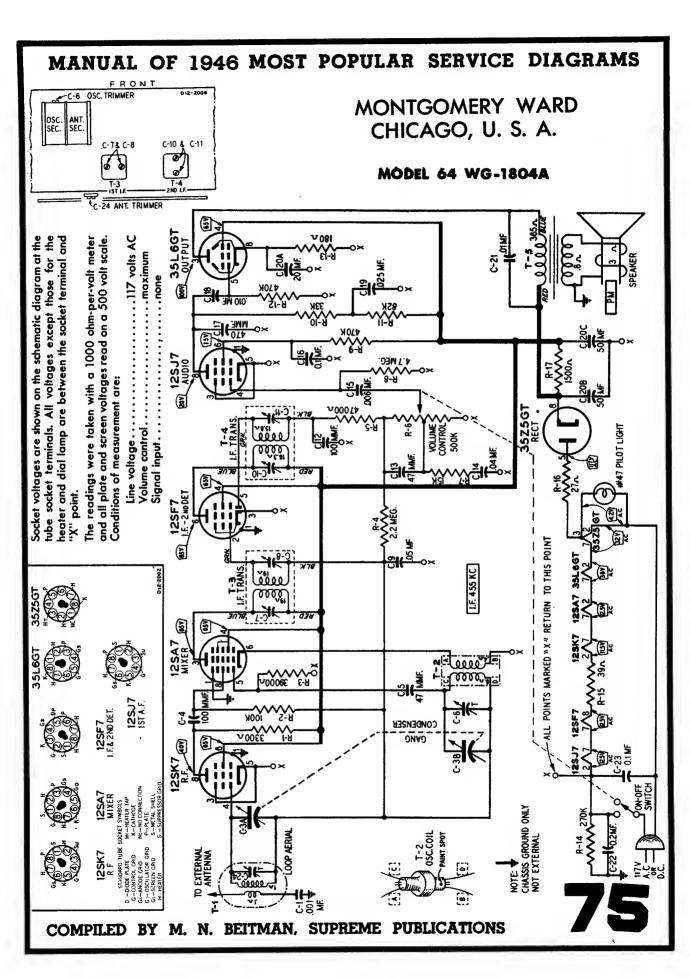
	Circult Symbol	Part Number	Description	Mode 1
Output Output Soas Soas	C1,C2	CV-10002-C	Condenser-Variable, with pulley	RC-5C5-C1
	C1,C2	CV-10002-D	Condenser-Variable, with pulley	RC-5C5-DL
	C3, C4, C10	CP-14503	Condenser-Paper, 0.05mfd. 400V	A11
	C5	CM-15500	Condenser-Mica, 0.00005mfd.	A11
	C6.C7	CM-15251	Condenser-Mica, 0.00025mfd.	A11
	C8, C9	CP-14103	Condenser-Paper, 0.0 mfd. 400V	A11
	C11A, C11B, C11C	CL-10001	Condenser-Electrolytic 20/20/20 mfd 150V	ATT
	RI	RC-32002	Resistor-Carbon, 20,000 ohms zwatt	A11
	R2	RC-31005	Resistor-Carbon, 10 megohms iwatt	A11
/ 호텔이 (두)	R3	RC-32004	Resistor-Carbon, 2 megohms iwatt	A11
/ 흔히워 \ 호기	R4	VC-10105	Control-Volume, with switch, megohm	A11
	R5	RC-32503	Resistor-Carbon, 250,000 ohms <u>i</u> watt	A11
	R6	RC-35003	Resistor-Carbon, 500,000 ohms ±watt	A11
(5)	R7	RC-31500	Resistor-Carbon, 150 ohms zwatt	. All
	R7 R8	RC-32000	Resistor-Carbon, 200 ohms zwatt	A11
	R 9	RC-31001	Resistor-Carbon, 1000 ohms watt	A11
	LI	AL-10000-D	Antenna-Loop,	RC-5C5-DL
		A1-10001-C	Antenna-Loop	RC-5C5-CL
	12	TRC-10000	Coll-Oscillator	RC-5C5-DL
	12	TRC-10000-C	Coil-Oscillator	RC-5C5-CL
	Li 12 12 Ti	TS-10000	Transformer-1st 1.F.	A11
	T2	TS-10001	Transformer-2nd 1.F.	A11
	T3	T0-10000	Transformer-Output	A11
	SPKR	SR-10001	Speaker-P.M. 4" round, with T3	A11
	SPKR	SR-10001	Speaker-P.M. 4" round, with T3	A11

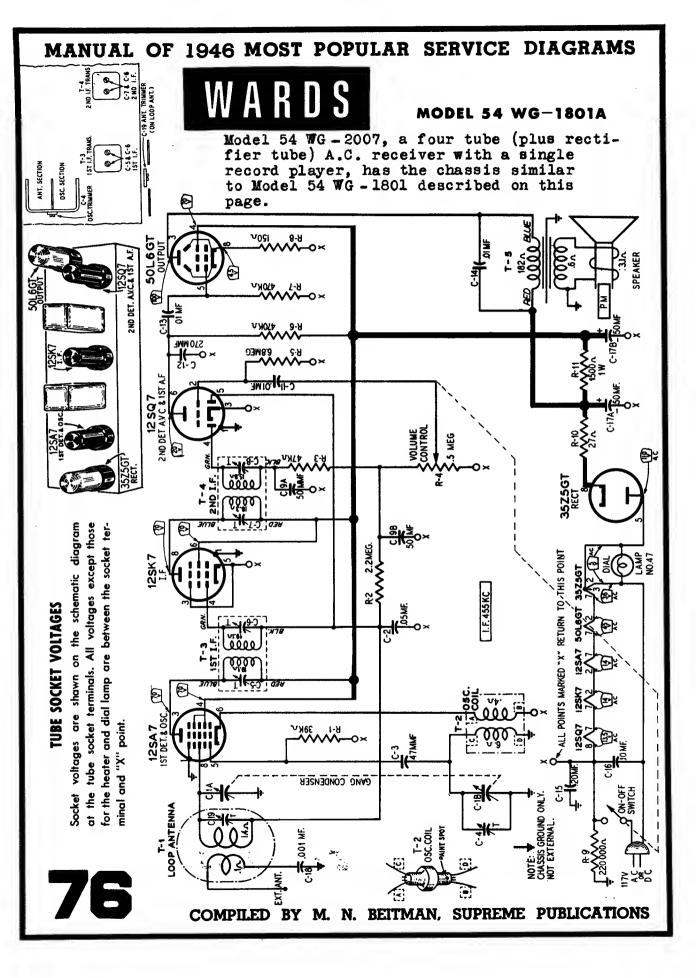


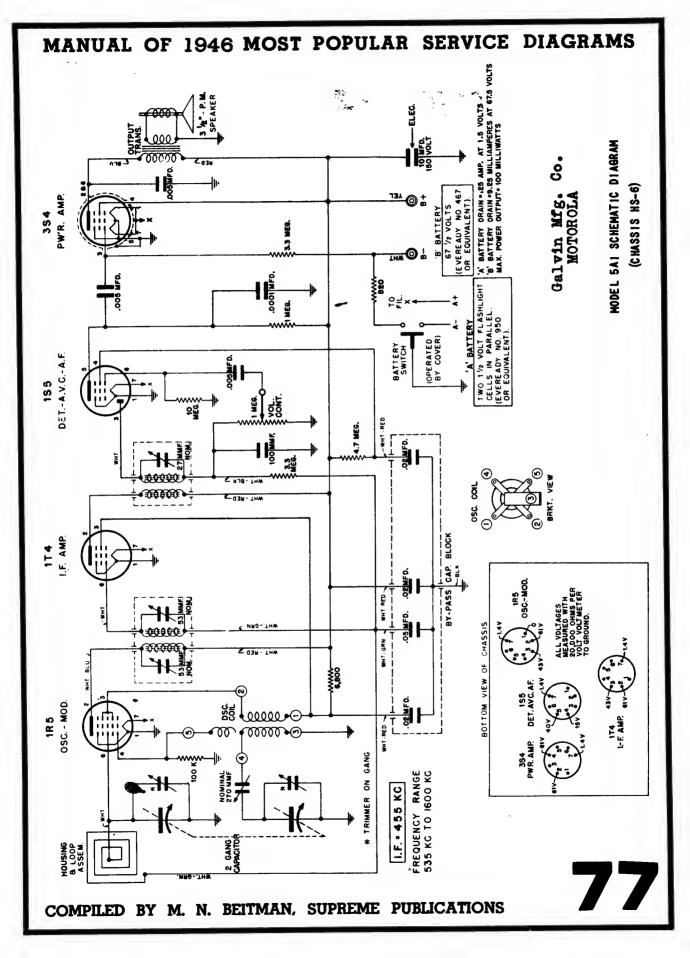

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS MONTGOMERY WARD MODEL 54BR-1505A **MODEL 54BR-1506A**

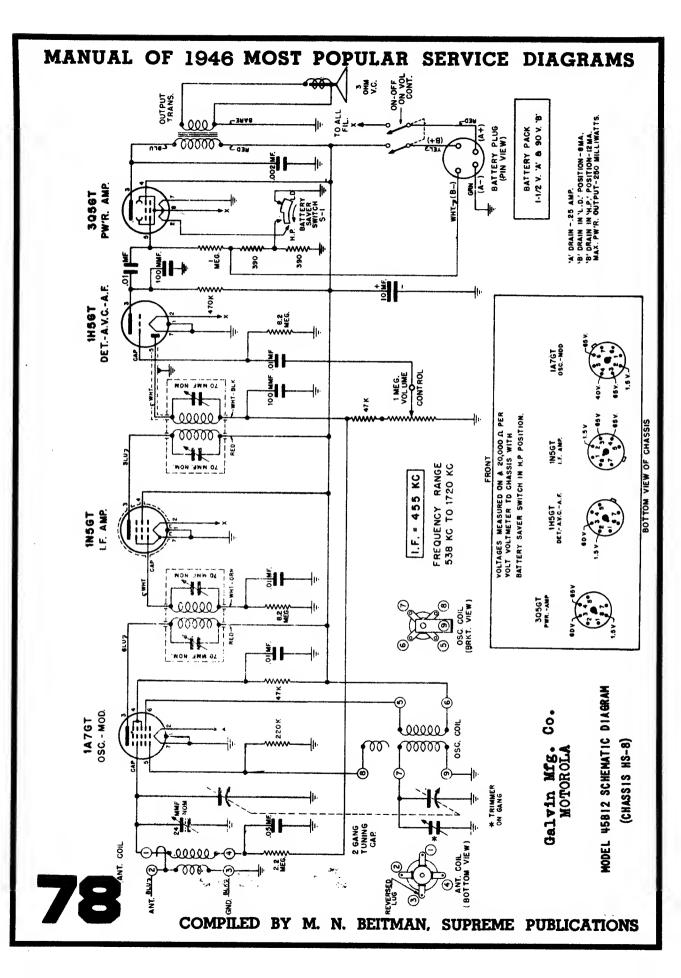


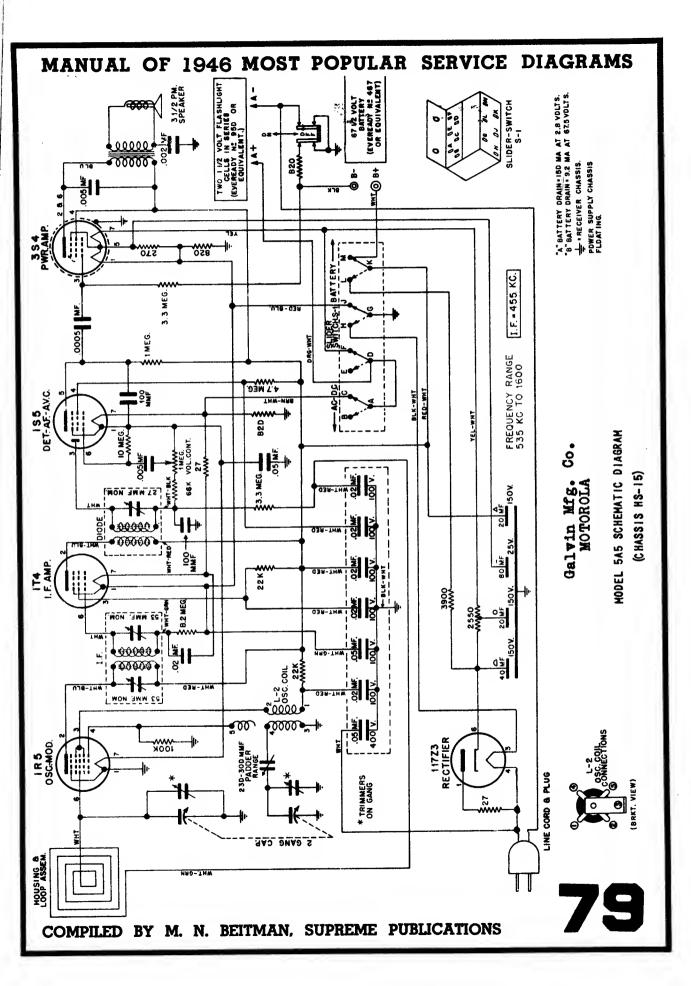

Connect ground lead of signal generator to B- of radio chassis through a 0.1 mfd. condenser.

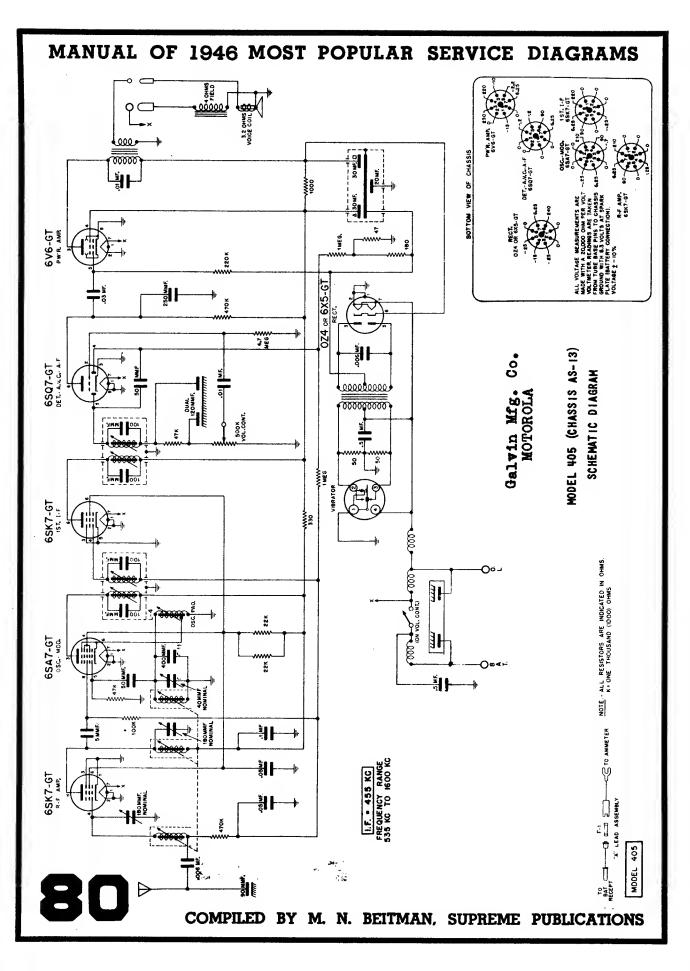

The loop antenna should be connected to the radio and in its proper position when making all adjustments. .

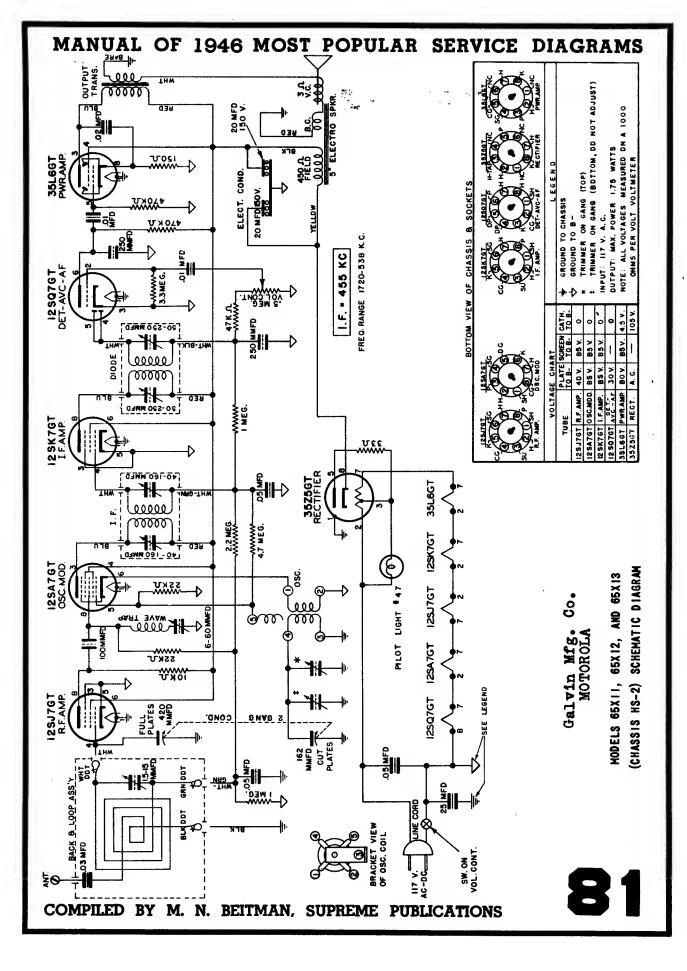


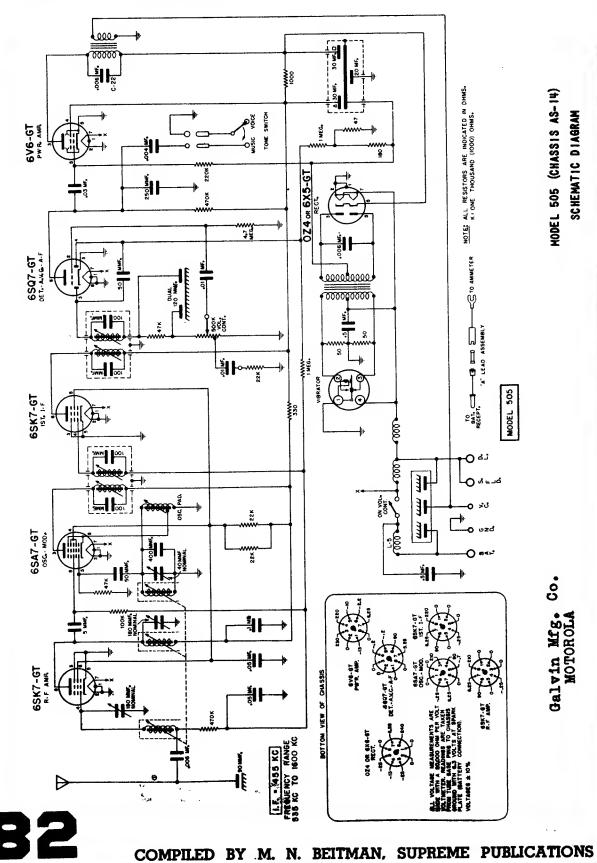


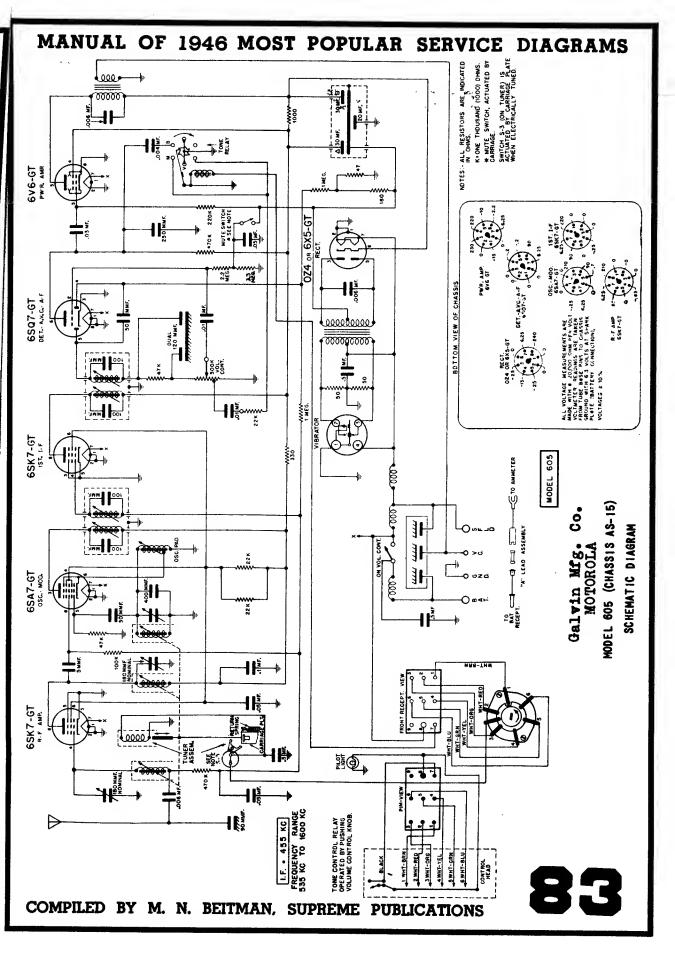


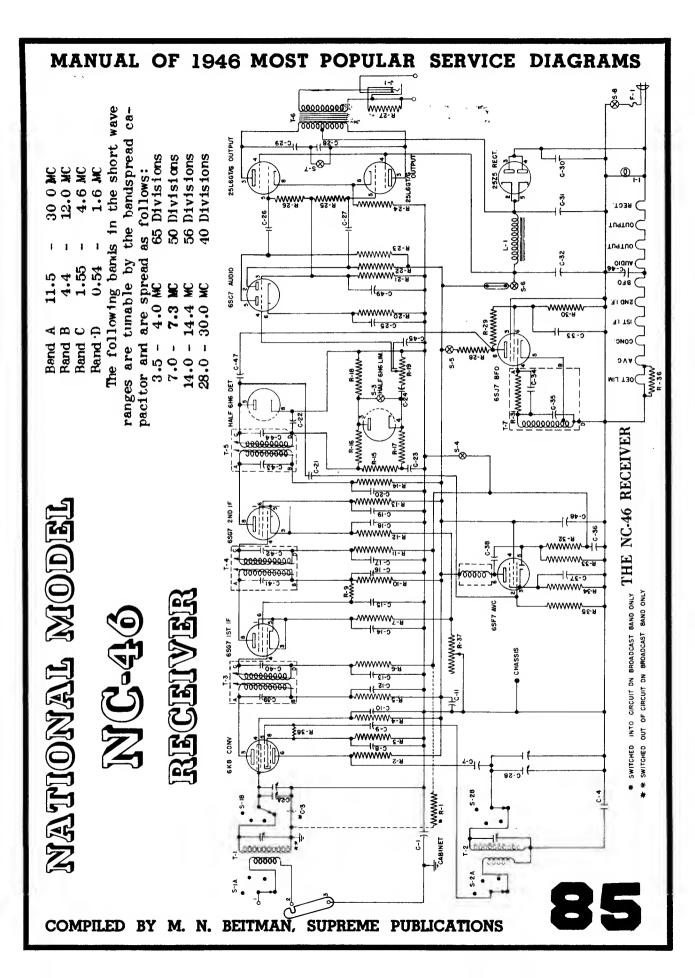


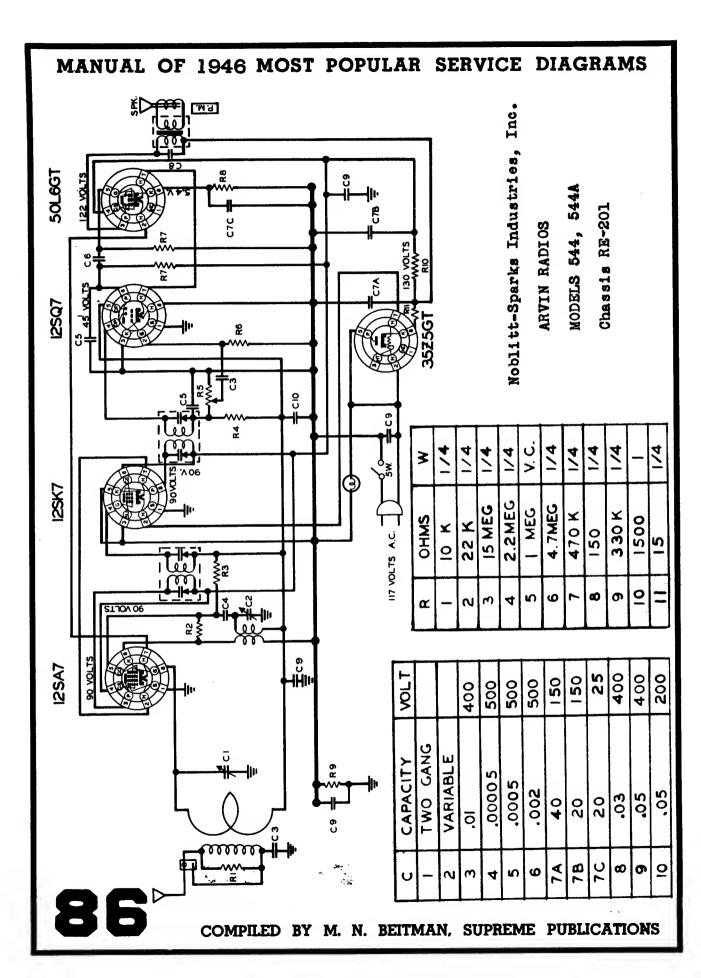


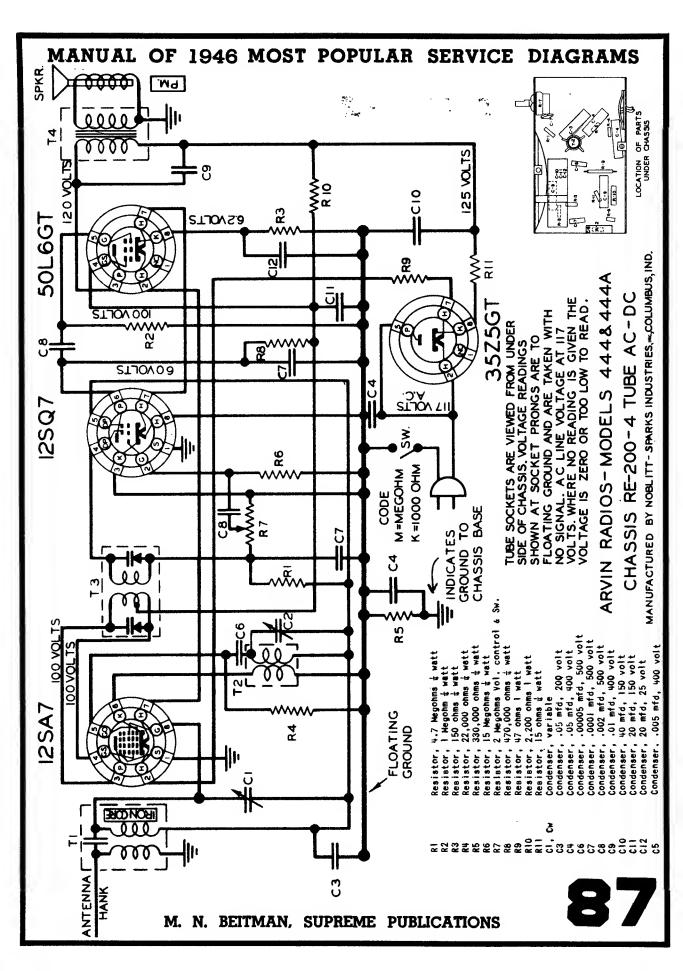


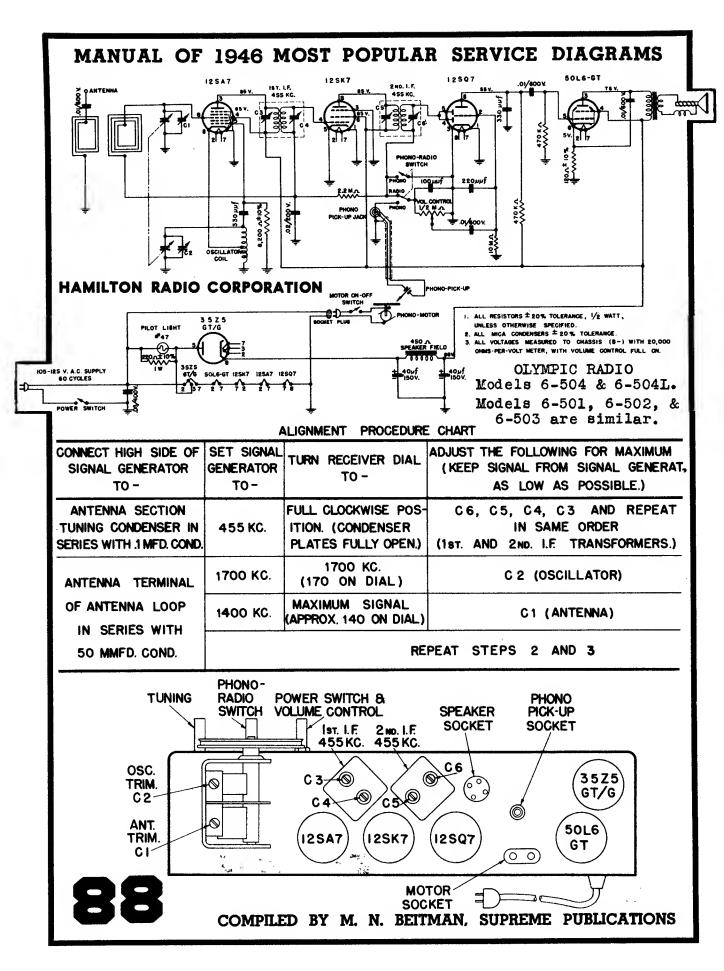


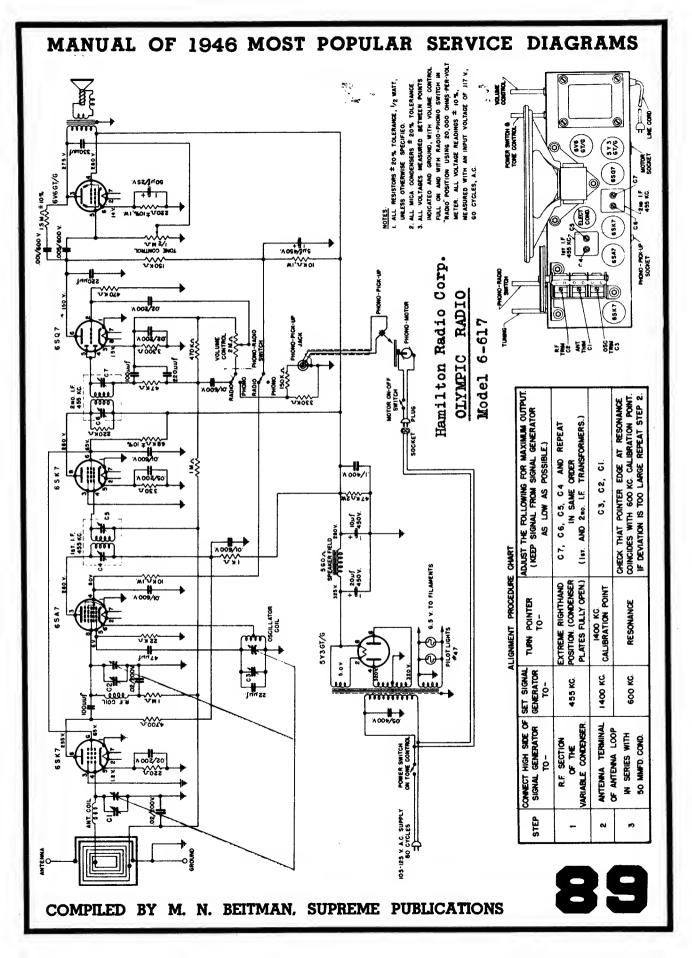


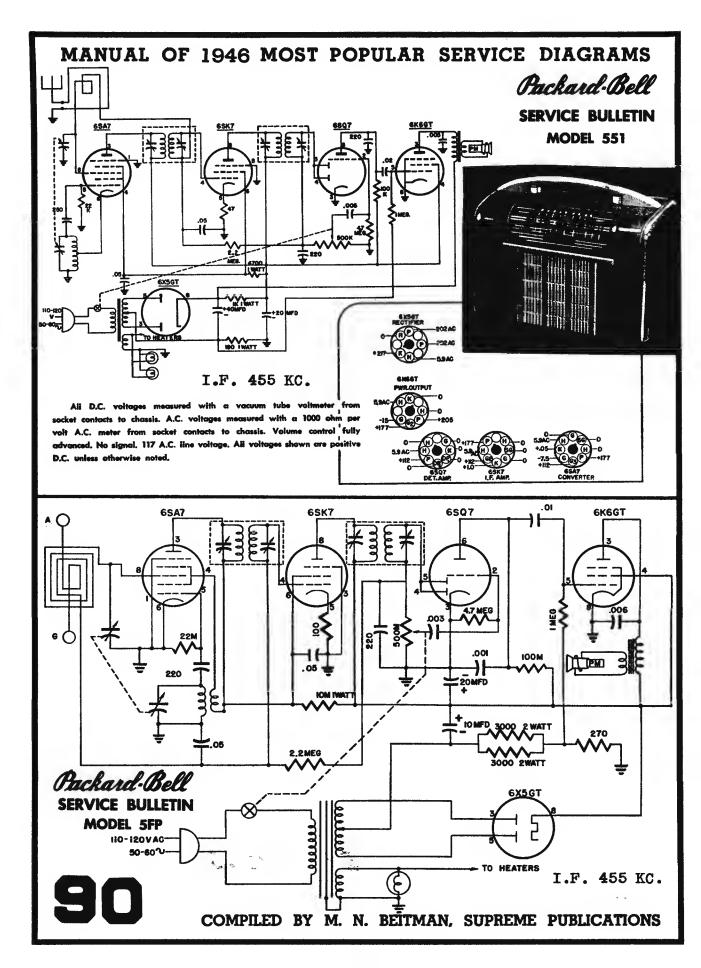


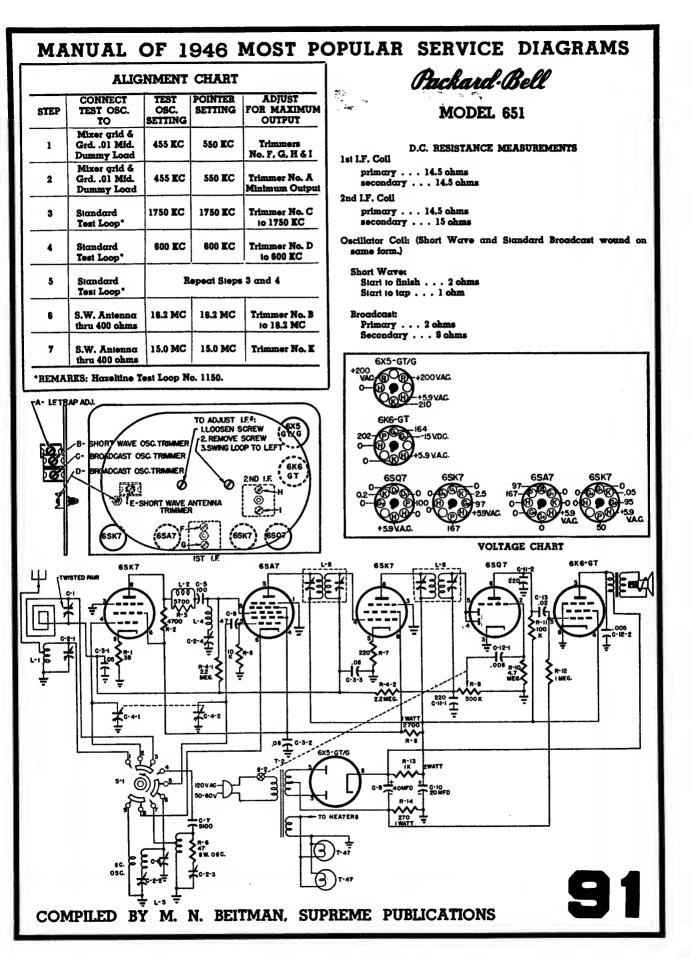


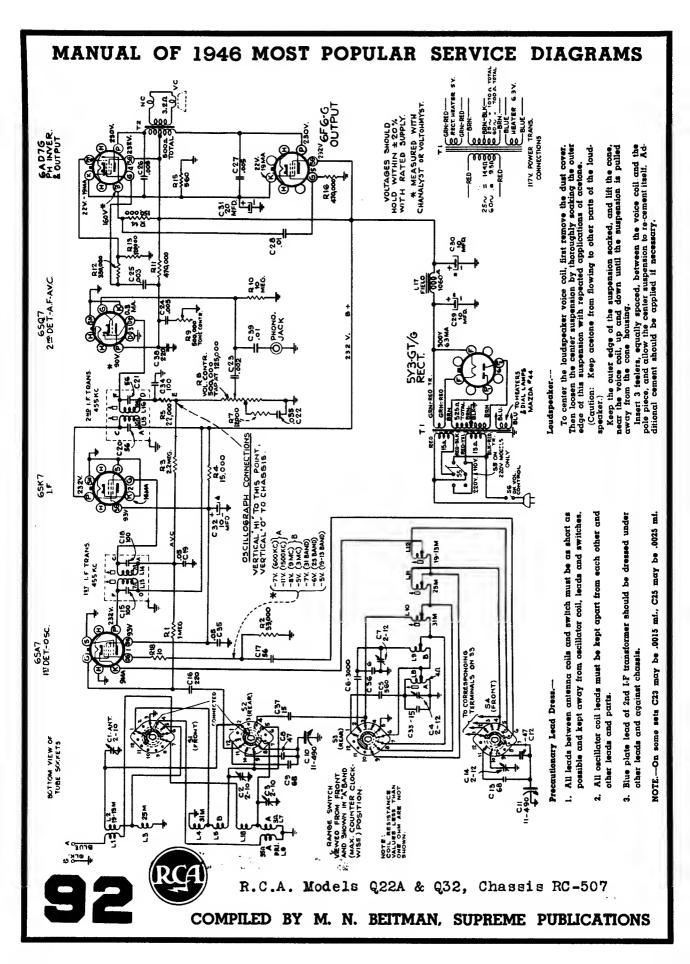



MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS NATIONAL COMPANY INC., MALDEN, MASS. THE NC-46 RECEIVER


Sumbal	Туре	Rating	Symbol	Туре	Rating
Symbol	Type	Tracting			
	CAP	ACITORS	C46	Paper	0.1 mfd., 400 VDCW
	r		- C47	Bakelite	1 mmf., 400 VDCW
C1	Paper	0.1 mfd., 400 VDCW	C48	Paper	0.1 mfdw, 400 VDCW
C2A	Ajr	365 mmf. max.	C49	Ceramic	270 mf., 500 VDCW
C2B	Air .	365 mmf. max.	Note	#1. Uapacito	or ratings differ for
	Paper	0.01 mfd., 400 VDCW			definite ratings can-
C4	Mica	See Note #1	not de	e listed.	
C5	Air	See Note #1		RESIS	STORS
C6	Air	See Note #1		10.51	
C7	Mica	0.0047 mfd., 500 VDCW 0.1 mfd., 400 VDCW	RI	Fixed	470,000 Ohms, 1/2 w
C8	Paper	100 mmf., 500 VDCW	R2	Fixed	10,000 Uhms, $1/2$ w
C9	Mica	0.1 mfd., 400 VDCW	R3	Fixed	220 Ohms, 1/2 w
C10 C11	Paper Paper	1 mfd., 200 VDCW	R4	Fixed	1,000 Ohms, 1/2 w
C12	Paper	0.1 mfd., 400 VDCW	R5	Fixed	1,000 Ohms, 1/2 w
C12	Paper	0.01 mfd., 400 VDCW	R6	Fixed	470,000 Ohms, 1/2 w
C14	Paper	0.1 mfd., 400 VDCW	R7	Fixed	500 Ohms, 1/2 w
C14 C15	Paper	0.01°mfd., 400 VDCW	R8	Not Used	
C16	Paper	0.1 mfd., 400 VDCW	R9	Fixed	22,000 Ohms, 1/2.w
C17	Paper	0.01 mfd., 400 VDCW	R1 0	Fixed	1,000 Ohms, 1/2 w
C18	Paper	0.1 mfd., 400 VDCW	R11	Fixed	#70,000 Ohms, 1/2 w
C19	Paper	0.01 mfd., 400 VDCW	R12	Fixed	560 Ohms, 1/2 w
C20	Paper	0.1 mfd., 400 VDCW	R13	Fixed	22,000 Ohms, $1/2$ w
C21	Ceramic	50 mmf., 500 VDCW	R14	Fixed	2,200 Ohms, 1/2 w 1,000,000 Ohms, 1/2 w
C22	Mica	270 mmf., 500 VDCW	R15	Fixed	470,000 Ohms, $1/2$ w
C23	Paper	0.1 mfd., 400 VDCW	R16	Fixed	1,000,000 Ohms, 1/2 w
C24	Paper	0.01 mfd., 400 VDCW	R17	Fixed Fixed	470,000 Ohms, $1/2$ w
C25	Electrol	25 mfd., 50 VDCW	R18 R19	Variable	500,000 Ohms, 1 w
C26	Paper	0.01 mfd., 400 VDCW	R20	Fixed	3,900 Ohms, 1/2 w
C27	Paper	0.01 mfd., 400 VDCW 0.02 mfd., 400 VDCW	R21	Fixed	270 000 Ohms, 1/2 w
C28	Paper	0.1 mfd., 400 VDCW		Fixed	270,000 Chws, 1/2 w
C29	Paper	0.1 mfd., 400 VDCW	1	Fixed	270,000 Ohms, 1/2 w
C30	Paper Electrol		1	Fixed	68 Ohms, 1/2 w
C31 C32	Electrol			Fixed ·	270,000 Ohms, 1/2 w
C32	Paper	0.1 mfd., 400 VDCW		Fixed	270,000 Ohms, 1 2 w
C33	Mica	270 mmf., 500 VDCW		Fixed W.W,	5 Ohms, 5 w
C35	Mica	270 mmf., 500 VDCW	R28	Fixed	100,000 Ohms, 1/2 w
C36	Paper	0.1 mfd., 400 VDCW	R29	Fixed	100,000 Ohms, 1/2 W
C37	Paper	0.1 mfd., 400 VDCW	R30	Fixed	100,000 Ohms, $1/2$ w
C 38	Mica	0.001 mfd., 500 VDCW	R31	Fixed	50,000 Ohms, 1/2 w
C39	Mica.	510 mmf., 500 VDCW	R32	Fixed	470,000 0hms, 1/2 w 470,000 0hms, 1/2 w
C40	Mica	510 mmf., 500 VDCW	R33	Fixed	470,000 Ohms, 1/2 w 22,000 Ohms, 1/2 w
C41	Mica	510 mmf., 500 VDCW		Fixed	2,200,000 Ohms, 1/2 w
C42	Nica.	510 mmf., 500 VDCW	/ R35	Fixed	100 Otms, 1/2 w
C43	Mica	510 mmf., 500 VDCM	/ R36	Fixed Variable	10,000 Ohms, 1 w
C 44	Mica	510 mmf., 500 VDCV	v". R37 V "R38	Fixed	22,000 Ohms, 1/2 w
C45	Paper	0.01 mfd., 400 VDCV	R39	Fixed	33,000 Ohms, $1/2$ w
			100	1 IAVU	
) # #	COMPILED RY	M. N.	BEITMAN. SU	PREME PUBLICATIONS
Sec.					

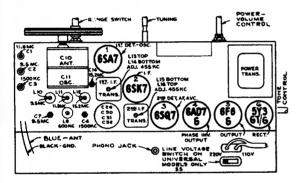






.

Pointer for Calibration Scale.—Improvise a pointer for the calibration scale by fastening a piece of wire to the gang-condenser frame, and bend the wire so that it points to the "180" mark on the calibration scale when the plates are fully meshed.


Dial-Indicator Adjustment.—After fastening the chassis in the cabinet, attach the dial indicator to the drive cable with indicator at the 540 kc mark (the first mark on "A" band to the left of "550"), and gang condenser fully meshed. The indicator has a spring clip for attachmont to the cable.

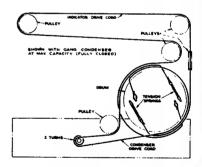
Spread-Band Alignment.—The most satisfactory method of aligning or checking the spread-band ranges is on actual reception of short-wave stations of known frequency, by adjusting the magnetite-core oscillator coil for each spread-band so that these stations come in at the correct points on the dial.

In exceptional cases, when the set is being serviced in a location where the noise level is high enough to prevent reception of shortwave stations, a test-oscillator may be used for alignment, but an extremely high degree of accuracy is required in the frequency settings of the test-oscillator, as a slight error will produce considerable inaccuracy on the spread-band dials. The frequency settings of the test-oscillator may be checked by one or both of the following methods:

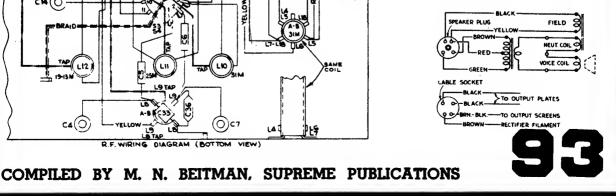
- Determine the exact dial settings of the test-oscillator (for frequencies at or close to the specified alignment frequencies) by zero-beating the test-oscillator against short-wave stations of known frequency.
- Use harmonics of the standard-broadcast range of a lest-oscillator, first checking the frequency settings on this range by means of a crystal-controlled oscillator, or by zero-beating against standard broadcast stations.

When a test oscillator is employed for spread-band alignment, a final check should be made on actual reception of short-wave stations of known frequency, and the magnetile-core oscillator coil for each band should be retouched so that the stations come in at the correct points on the dial.

FRON TO CIO (GHD) COND TOCIO ē BRI TELLO CIG C õ Ø Q 00 C17 65A7 TOCHO - GEREN GRN BLUE -212 VEL LEAD ci3 GREEP 200 SAME CON **CH**(O VELLOW 30 9 Lt2 LII L10 SAME L9 TAP <u>]</u> 1% **c4**(O) (O)c1 FLLOW-L9 LB TAP LĎ 119 R.F. WIRING DIAGRAM (BOTTOM VIEW)


RCA MODELS 022A & 032 Chassis No. RC-507—Mfr. No. 274

Steps	Connect the high side of the test-osc. to	Tune tesi- osc. to	Range switch	Turn radio dial to	Adjust the following for max. peak output
1	6SK7 I-F grid in series with .01 mid.	in series		Quiet	L15 and L18 2nd I-F Trans.
2	6SA7 lsf Dot. grid in series with .01 mid.	455 kc	A	Poini near 180º	L13 and L14 lsi I-F Trans.
3		11.8 mc		138.5°	L11 (osc.)** C1 (ani.)
4		15.2 mc	25 M	170	C14 (osc.)*
5	Ant. lead	Ropect			
6	in series with 300	15.2 mc	19-13 M	1560	L12 (osc.)**
7	ohms	9.5 mc	31 M	156 ^e	L10 (osc.)** C2 (ant.)
8		9.5 mc	В	11.50	C7 (osc.)***
9	Ant. lead in series with 200 mmi.	1,500 kc	_	280	C4 (osc.) C3 (ant.)
10		600 kc	A	150°	LS (osc.) (Rock gang)
11		Ropeat	stops 9 a	nd 10	


* Use minimum capacity peak if two can be obtained. Check image to determine that C14 has been adjusted to the correct peak by tuning receiver to approximately 14.29 mc (29°) where a weaker signal should be received.

•• If two peaks can be obtained use the one obtained when the core screw is farthest out (counter-clockwise).

••• Peak at minimum capacity if two peaks can be obtained. NOTE: Oscillator tracks above signal on all bands.

Dial-Indicator and Drive Mechanism

RCAVICTOR

VICTROLA Phonograph Models-52E and 52HE Series

POWER SUPPLY

IMPORTANT-Do not plug chassis into a d.c. power supply.

POWER OUTPUT RATING

Undistorted	
Maximum	 1.2 watts (approx.)
Maximum	

SERVICE HINTS

To Remove Turntable:

Remove spring clip from turntable spindle and lift turntable straight up. Irregular Turntable Speed:

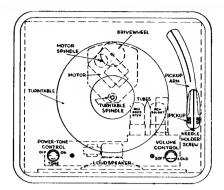
- (1) Oil or grease on rubber tire of turntable drive wheel or on motor spindle. Remove turntable and clean spindle, drive wheel tire, and inside edge of turntable with naphtha or carbon-tetrachloride.
- (2) Insufficient tension in drive wheel tension spring.
- (3) Friction between drive wheel plate and motor mounting plate.
- (4) Lack of Inbrication.

LUBRICATION

Motor

The bearings of the motors furnished in these instruments are lubricated at the factory and should require no further lubrication for a period of at least one year. When lubrication is required, apply a few drops of any good grade of S.A.E. /10 oil to the bearing felts.

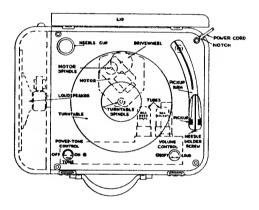
Turntable Spindle

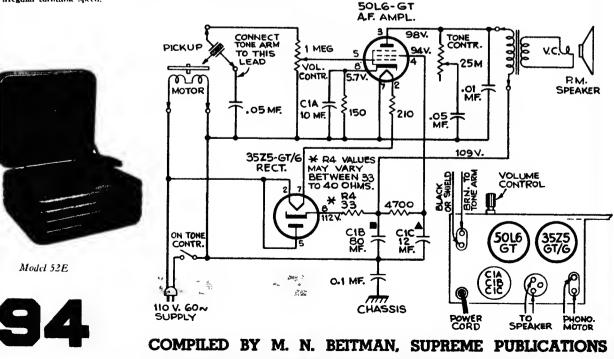

When lubrication is required, apply one or two drops of Gargoyle 600W to the bearing.

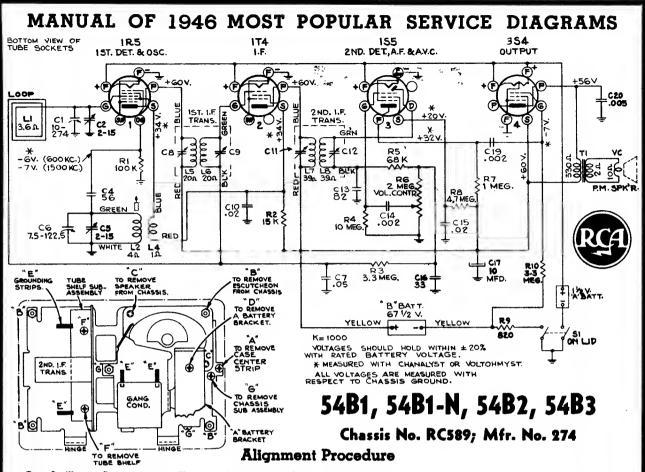
Drive Wheel

Apply one or two drops of any good grade of S.A.E. #10 oil to the bearing.

CAUTION:


Exercise extreme care to prevent getting any oil on the rubber tire or on the motor shaft. Oil on these parts will cause slippage with resultant irregular turntable speed.




60 TO 50 CYCLE CONVERSION

A spring sleeve or bushing is used to increase the diameter of the motor drive spindle, to compensate for the slower speed of the motor when used on a 50 cycle line.

Spring sleeves and bushings are available as follows: For motors marked "M-1", use Stock No. 71275. For motors marked "M-3", use Stock No. 71276. For motors marked "M-4", use Stock No. 71277.

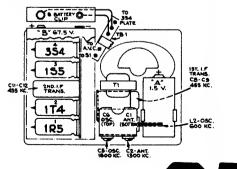
Test Oscillator.—Connect test oscillator as indicated in chart keeping the output as low as possible to avoid A V C action.

Output Meter.--Connect meter from top lug of TB1 (plate of 354) to ground. Turn volume control to maximum position.

Fig. 1 shows the modifications necessary to convert the center strip portion of a case into a convenient shield to be used as a substitute for the regular case center strip in the RF, Osc. alignment.

Steps	Connect the high side of test osc. to	Tune test-osc. to—	Turn radio dial to	Adjust the following for max. peak output	
1	Connection lug of C2, located on	455 kc	Quiet point near 1,600 kc	C11, C12 2nd I-F trans.	
2	rear of gang in series with .01 mf.	455 kc	Quiot point near 1,600 kc	C\$, C\$ lst I-F trans.	
3		1,600 kc	1,600 kc	C5 (osc.)	
4	*Antenna coupling loop thru 200 mmf. capacitor	1,500 kc	1,500 kc	C2 (ant.)	
5	mini. coputitor	600 kc	600 kc	L2 (osc.)	
8	Repeat steps 4 and 5 for final adjustments.				

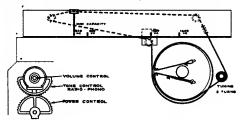
Steps 3, 4 and 5 require a coupling loop from the signal generator to feed a signal into the receiver loop located in the lid. This loop should be approximately one turn of $5 \times 3t_2$ inches coupled to the signal generator through a 200 mml. capacitor, and loosely coupled to the receiver loop antenna at about 13/4 inches distance, so as not to disturb the receiver loop inductance. Ground test oscillator through .1 mf. capacitor to receiver chassis.


Tools required:

- 1. One Phillips No. 1 screwdriver.
- 2. One small neutralizing alignment tool.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

CRITICAL LEAD DRESS


- Dress blue, green and black leads of second I-F transformer as direct as possible. If excess lead exists, dress down side of socket and flat against chassis to transformer opening.
- Cross the green and the black leads inside the first I.F transformer can, keeping the green lead to the outside. Keep the blue and the green leads separated as far as possible throughout their length.
- Dress audio coupling capacitor (C14: .002 mf.) and the lead to the volume control up and underneath the shelf supporting the output transformer.
- 4. Dress the three capacitors pyramided behind the speaker, parallel to the complete assembly and with enough room behind the battery holder to allow the holder to move when a battery is installed or removed.
- 5. Dress the "B" battery leads behind the gang frame and over the top of the output transformer.
- Observe the outside foil connections on all paper capacitors, also the polarity of the electrolytic capacitor (C17).
- Keep blue and red leads of output transformer above the mounting shelf.

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS VICTOR **Test Oscillator.**—Connect high side of test oscillator as shown in chart. Connect low side through a .01 mf capacitor to common "—B". Keep the output signal as low as possible to avoid a.v.c. action. RCA

55U, 55AU

Chassis No. RC1017; Mfr. No. 274

Dial Pointer Adjustment.—Rotate tuning condenser fully counter-clock-wise plates (fully meshed). Adjust indicator pointer to left (max. cap.) mark on dial back plate.

TAPE

TAP ON SOME MODELS

20 MFD

200 g

OUTPUT

.

30 MFI

+B

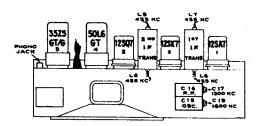
FIELD

00

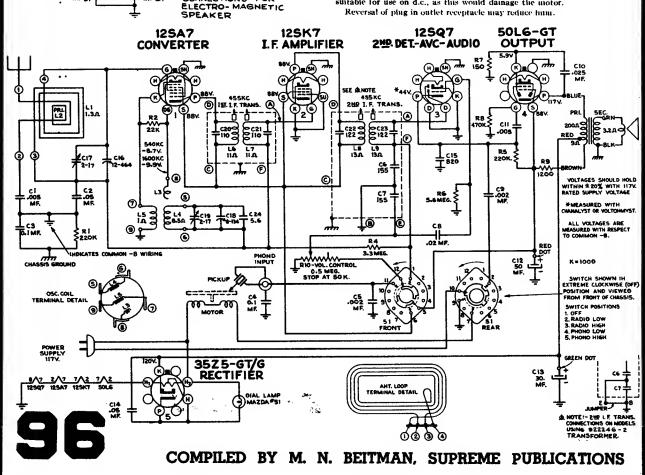
RECT.

OUTPUT

NEUT.


WITH EM SPEAKERS VOLTAGES ARE SLIGHTLY LOWER

CONNECTIONS FOR


COIL

Output Meter.—Connect meter across speaker voice coil. Turn volume control clockwise to radio maximum high position (3) for alignment.

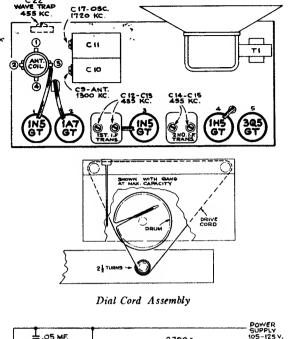
Steps	Connect the high side of test- oscillator to	Tune test-osc. to—	Tnrn radio dial to—	Adjust the follow- ing for max. peak ontput	
1	I.F. grid, in series with .01 mfd.	455 1 -	Quiet poiut	L8 and L9 2nd LF. tranoformer L6 and L7 1st LF. tranoformen	
2	lst Det. grid in series with .01 mfd.	455 kc	1,600 kc end of dial		
	NOTEANTEN	NA LOOP	MUST BE IN	CABINET	
3	Antenna terminal in series with 220 mmfd.	1600 kc	Gang at minimum	C19 (овс.)	
4	Radiated signal 1300 kc		Signal Frequency	C17 (ant.)	
5	Repeat steps 3 an	·····			

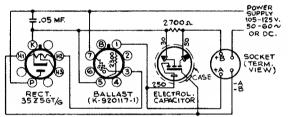
Power Supply.—Although this model employs an ac-dc chassis, it is not suitable for use on d.c., as this would damage the motor. Reversal of plug in outlet receptacle may reduce hum.

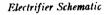
RCAVICTOR

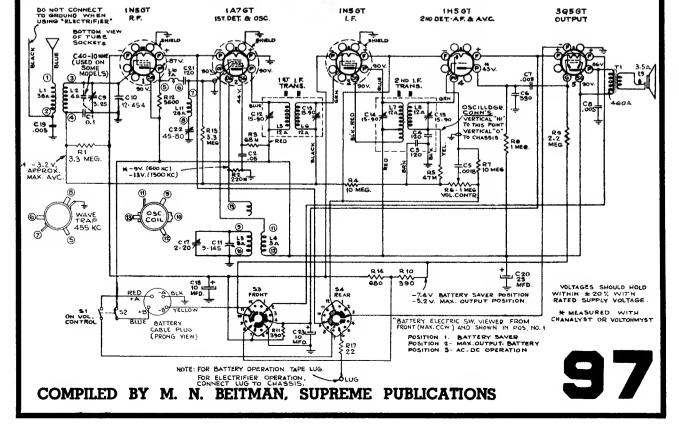
55F and CV-42 Electrifier

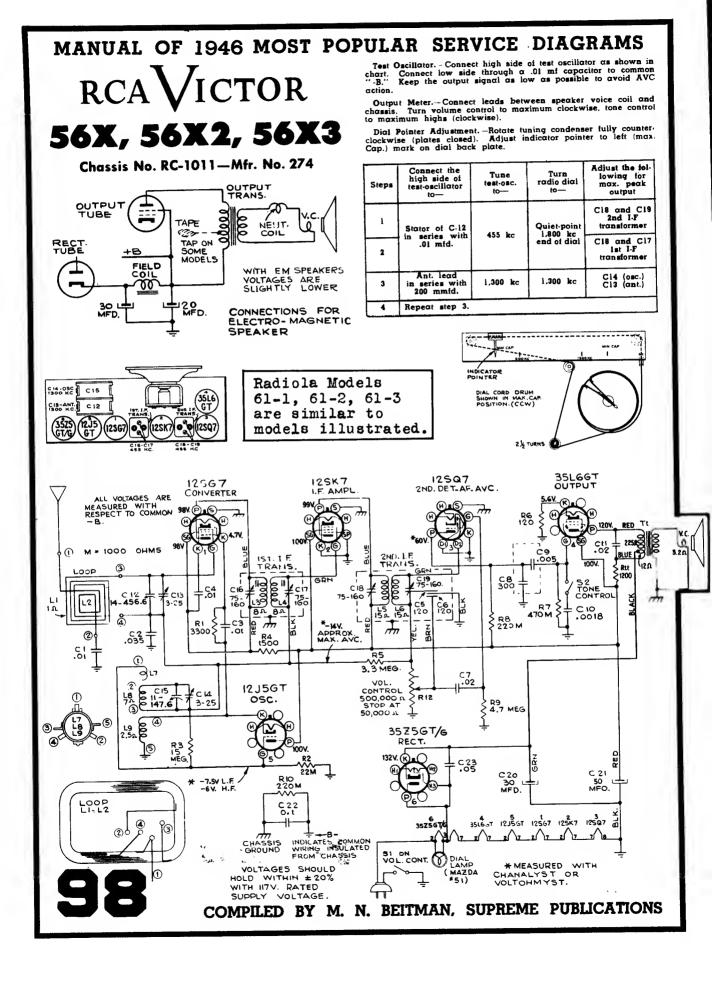
Chassis No. RC-1004E; Mfr. No. 274

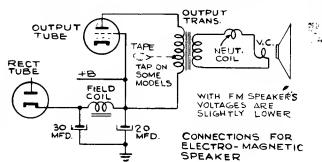

Alignment Procedure


Cathode Ray Alignment is the preferable method. Connections for the oscillograph are shown in the diagram.


Output Meter Alignment.—If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum. **Test Oscillator**.—For all alignment operations, connect the low side of the test oscillator to the receiver chassis, and keep the output as low as possible to avoid AVC action.


Pre-Setting Dial.-With gang condenser in full mesh, the pointer should be set at the feft-hand end dial calibration mark.


Step	Connect high side of the test oscillator to	Tune test osc. to—	Turn radio dial to—	Adjust the follow- ing for maximum peak output
1	I-F grid in series with .01 mfd.	455 kc	Quiet point between 550	C14, C15. (2nd I-F Trans.)
2	1A7GT grid in series with .01 mfd.	422 EC	and 750 kc	C12, C13 (1st I-F Trans.)
3	Antenna terminal in series with 200 mmfd.	1,720 kc	Tuning condenser rotor plates ali out	C17 (osc.)
4		1,300 kc	1,300 kc signal	C9 (ant.)
5		455 kc	Quiet point between 550 and 750 kc	Adjust C22 for minimum output on strong 455 kc signal



GROUND

K=1000

HUICATES COMMON

* MEASURED WITH CHANALYST OR VOLTOHMYST.

RCAVICTOR 56X5

Chassis No. RC-1023-Mfr. No. 274

Sleps	Connect high side of the test oscillator to	Tune lest	Turn radio dial 10—	Adjust the following for maximum peak output		
1	Pin #8 of 125A7 in series with	455 kc	Quiet Point at 1,600 kc	C25, C26 2nd I-F trans.		
2	0.1 mfd.		end of dial	C23, C24 Ist I-F trans.		
3		600 kc	600 kc ''A'' Band	C30 (osc.) Rock gang		
4	Ant, terminal in series with	1300 kc	1300 kc "A" Band	C28 (osc.) C20 R.F)		
5	220 mmf.	Repeat 3 Rocking gang				
6		Repeat 3, 4 and 5 ior exact cal.				
7	Ant, terminαi in scries with 0.1 mid.	11.8 mc	11.8 mc	C29 (osc.)* Rock gang		
8	Ant. terminal in series with 47 mmf.	11.8 mc	11.8 mc	C22 (R·F) Rock gang		
9	Repeat step	ρs 7 αnd 8				

3516

GT

(1250)

TRANS

R

Ø

(12SK7

* Use minimum capacity peak if two can be obtained. Check for selection of correct peak by tuning receiver to approximately 10.9 mc where a weaker signal should be received.

C 21 RF

C 27 05 C

(12567

C 30

197 IF

10

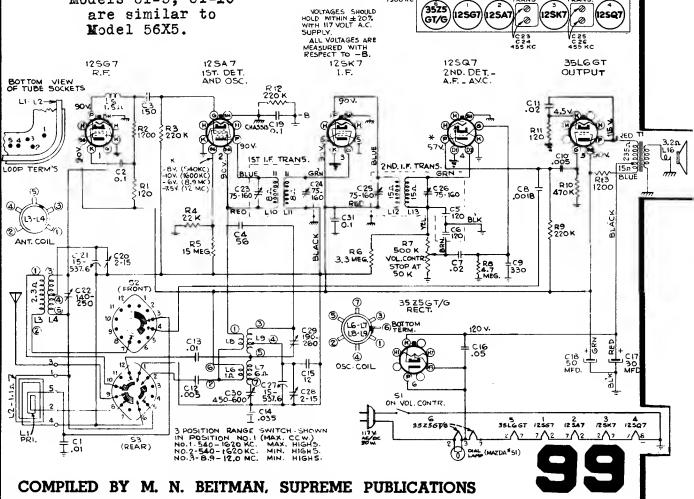
ø,

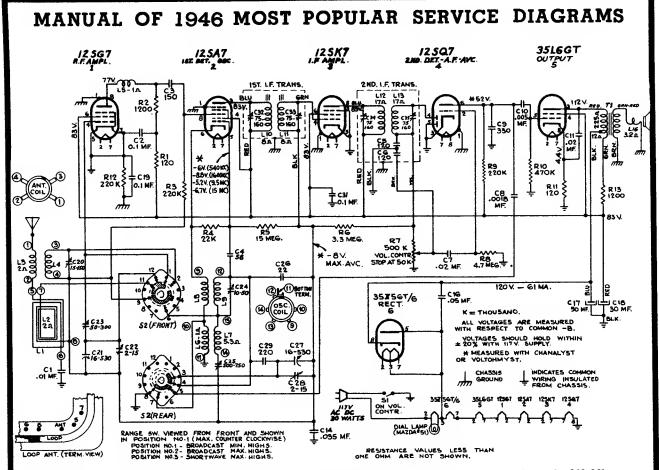
OSC 050

(125A7)

C 20

3523


GT/G


С22. П.емс

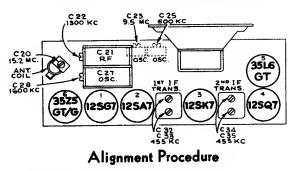
COIL

С28 1300 ко

R.C.A. Victor Model 56X10 and Radiola Models 61-5, 61-10 are similar to Model 56X5.

On some models, electrolytic capacitor (C17, C18) may be 20 Mfd./30 Mfd. The AVC bypass capacitor, (C14) may be .030 Mf.

Steps	Connect high side of the test oscillator to—	Tune test osc. to	Turn radio dial to—	Adjust the follow- ing for maximum peak output
1	I.F. grid in series with .01 mfd.	455 kc	'A' Band Ouiet point	C34, C35 2nd I-F trans.
2	12SA7 grid in series with .01 mfd.	435 KC	at 1600 kc end of dial	C32, C33 ist I-F trans.
3		600 kc	'A' Band rock gang near 600 kc	C25 (BC trimmer)
4	Antenna terminal on loop	1600 kc	1600 kc	C28 (Osc.)
5	in series with 220 mmf.	600 kc	Rock gang near 600 kc	Recheck C25
6		1300 kc	1300 kc	C22 (r.f.)
7			'C' Band rock gang near 15.2 mc.	C20 (ant.) on top of S.W. ant. coil
8	Antenna terminal on loop in series with	15.2 mc.	15.2 mc. ceater of "M"_"19M"	C24 (Osc.)*
9	22 mmf.	9.5 mc.	9.5 mc.	C23 (r.f.)
10	*	15.2 mc.	15.2 mc.	Recheck C20

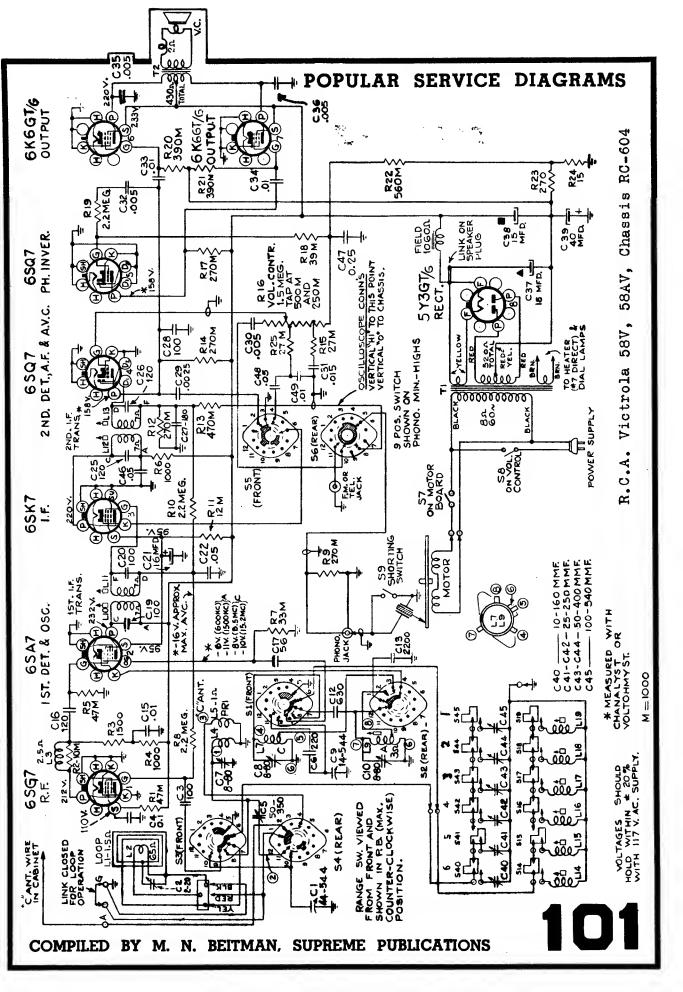

*Use minimum capacity peak, if two peaks can be obtained. Note.---Oscillator tracks 455 kc above signal on both bands.

COMPILED

RCAVICTOR

56X11

Chassis No. RC-1023A; Mfr. No. 274



Test Oscillator.—For all alignment operations, keep the output as low as possible to avoid a.v.c. action.

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum. Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the dial backing plate for quick reference during alignment.

Power Supply Polarity.—For operation on d-c, the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

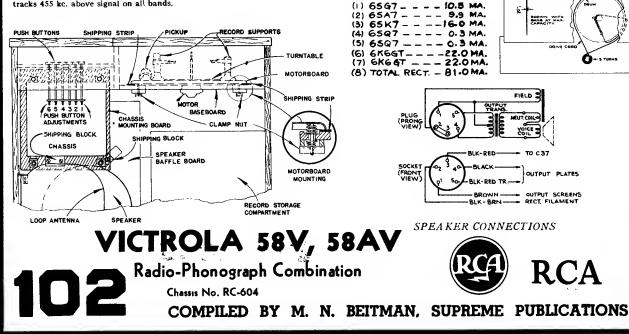
BY M. N. BEITMAN, SUPREME PUBLICATIONS

Cathode-Ray Alignment is the preferable method. Connections for the osciiloscope are shown in the schematic diagram.

Output Meter Alignment.---If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator.—For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the chassis for quick reference during alignment. In the event that only the chassis is returned for service, and the cabinet with its tuning dial is left in the customer's home, the full size scale printed in this service note can be used for reference.


Using Tuning Dial .----

- 1. Remove glass dial from the cabinet.
- 2. With gang in full mesh, the dial pointer should be set to a point 1/16 inch to left of reference mark at left hand end of the dial backing plate.
- Support the glass dial over the pointer with spacers so that the extreme left scale graduation coincides with the pointer. Use scotch tape to hold the glass dial in place.

"C" Band Reception.—For best reception on "C" band with an outside antenna, adjust the trimmer screw of C5 on the antenna coil. Turn screw carefully with an insulated screwdriver (RCA Stock No. 31031) while the receiver is tuned to a station in the 31-meter band. If returning to internal antenna at any time, close the link on the center terminal and readjust band antenna trimmer (C5) for best reception on 31-meter band.

Steps	Connect test-osc. output to	Tune test osc. to	Turn radio dial to—	Adjust the follow- ing for maximum peak output			
1	I-F grid in series with .01 mfd.		"A" band	L13-L12 (2nd I-F trans.)			
2	1st Det. grid in series with .01 mfd.	455 kc	540 kc	L11-L10 (1st I-F trans.)			
3		15.2 mc	"C" band 15.2 mc	C8 (osc.)* C7 (ant.)			
4	A-Terminal in series with 47 mmfd. (link closed)	9.5 mc	"C" band 9.5 mc	C5 (ant.) (Rock gang)			
5	-	Repeat steps 3 and 4					
6	Yellow loop lead	1,500 kc	"A" band 1,500 kc	C10 (osc.)			
7	in series with 200 mmfd. (link closed)	600 kc	"A" band 600 kc	L9 (osc.)			
8		Repeat steps 6 and 7.					
9	Install and connect chassis in cabinet with antenna link closed. Tune in a radiated oscillator signal at 1,500 kc. and peak the "A" band trimmer C2 (on loop). Rock in L9 for peak output at 600 kc.						

*Use minimum capacity peak if two peaks can be obtained. Oscillator tracks 455 kc. above signal on all bands.

Critical Lead Dress:

- 1. Bus from "C" oscillator coil to range switch must be held to length and dressed close to coil.
- C30 (audio coupling capacitor to volume control) should be dressed close to front apron. 2.
- A.C. cord and motor leads must be dressed away from phono and F.M. jack. 3. 4. Excess trans, leads to be dressed between trans, and rectifier socket.
- 5. Keep R5, C16 bus (in grid circuit of 6SA7 tube) as short as possible.
- Dress C28 (in plate circuit of 1st A.F.) close to socket. 6. Keep R21 (grid resistor) and C34 (coupling capacitor of output tube) close to socket. 7.
- Keep R25, C48 (in tone compensating circuit) close to front apron. 8.
- 9. Dress green lead from osc. coil to trimmer close to oscillator coil.
- 10. Dress red A.C. leads away from I.F. trans. and 6SQ7 socket.
- 11. RF choke in plate of 6SG7 must be dressed toward back apron.

For Information on Automatic Mechanism refer to Service Data for Model 960001-1 Mechanism.

6

Ø

6

C9 OSC

ANT

Ø ත

٢

T4

0

CATHODE CURRENTS

ANT

(2) AN

C5-CANT.

2

6SA7

656

TO LOOP

9.5 MC

19-"A"OSC.

C38 C38

0

IST. I.F.

8 5Ŷ3

GT/G

PHONO.

TUBE AND TRIMMER LOCATIONS

TO C ANT

POWER CORD

6SK

6

۹--۹

C8-"C"OSC. 15.2 MC.

C10-"A"OSC.

C7-"C"ANT. 15.2 MC.

6SQ[®]

6SQ"

6K6

ĠT/G PHONO-

L12 - TOP L13 - BOTTOM 455 KC.

ð

2 ND. I.F.

൳๖

M. OR TE

6K6 GT/G

Cathode-Ray Alignment is the preferable method. Connections for the oscillograph are shown in the schematic diagram.

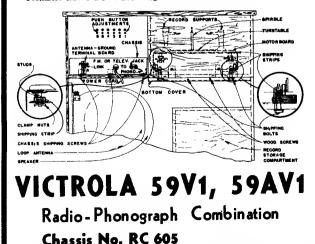
Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator.—For all alignment operations, connect the low side the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the chassis for quick reference during alignment. In the event that only the chassis is returned for service, and the cabinet with its tuning dial is left in the customer's home, the full size calibration scale printed in this service note can be used for reference.

Using Tuning Dial.

- 1. Remove the dial glass from the cabinet.
- 2. With gang at full mesh the pointer should be set to a point (1/16) inch to the left of the reference mark at the left hand end of the dial backing plate.
- 3. Place the glass dial under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the glass dial in place.


Using Dial Scale Printed In Thia Service Note.-

Follow the procedurc above, substituting the dial scale printed in this service note for the glass dial in the cabinet.

"C" Band Reception.—For best reception on "C" band with an outside antenna, adjust the trimmer screw of C4 on the antenna coil. Turn screw carefully with an insulated screwdriver (RCA Stock No. 31031) while the receiver is tuned to a station in the 31-meter band. If returning to internal antenna at any time, close the link on the center terminal and readjust "C" band antenna trimmer (C4) for best reception on 31-meter band.

Steps	Connect high side of test osc. to	Tune test osc. to	Turn radio dial to	Adjust the follow- ing for maximum peak output—			
1	I-F grid in series with .01 mfd.			L12, L11 (2nd I-F Trans.)			
2	1st Det. grid in series with .01 mfd.	455 kc	"A" Band 540 kc	L10, L9 (lat I-F Trans.)			
3	Yellow loop lead	1,500 kc	"A" Band 1,500 kc	C9 (osc.)			
4	in series with 200 mmf. (link closed)	600 kc	"A" Band 600 kc	L8 (osc.)			
5		Repeat steps 3 and 4					
6		6.1 mc	"B" Band 6.1 mc	C8 (osc.)* C2 (ant.)			
7	Aut. terminal in series with	15.2 mc	"C" Band 15.2 mc	C7 (osc.)* C6 (ant.)			
8	47 mmf. (link closed)			C4 (ant.)			
9		Repeat ateps 7 and 8					
10	in a radiated osci	illator signal	at 1.500 kc	link closed. Tune and peak the "A" L8 for peak eutput			

*Use minimum capacity peak if two peaks can be obtained. Oscillator tracks 455 kc above signal on all bands.

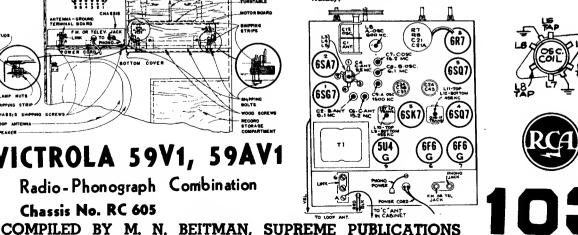
Critical Lead Dreas

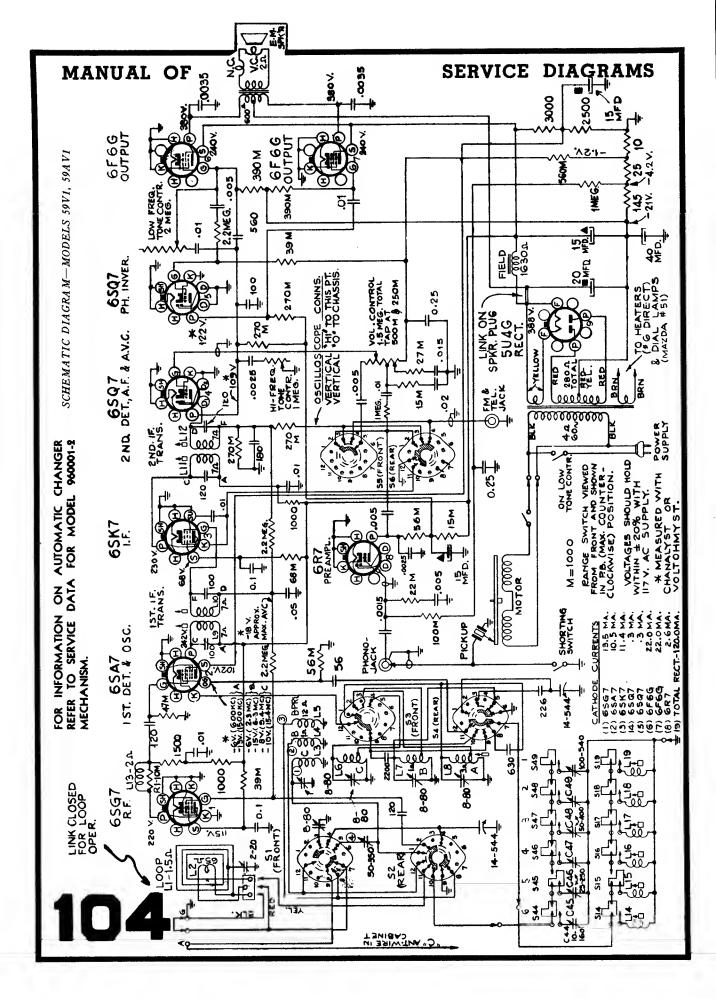
- 1. Push button, R.F. and oscillator leads should be separated as much as possible to reduce degeneration on push button reception.
- 2. R.F. choke in plate circuit of 69G7 should be dressed towards the back apron.
- 3. Dress green push button lead under clamp and away from "C" band series capacitor.
- 4. Dress heater leads away from grids and diodes
- 5 Dress phono. cables up and away from all wiring,
- Dress all excess leads from transformer back towards transformer. 6
- 7. Keep output plate leads short and dressed close to chassis,
- 8. Dress green lead from 6SA7 screen to electrolytic down close to chassis. Dress "C" band coil lead from oscillator coil to range switch down toward green lead. 9.
- 10. Keep yellow loop lead clear of all wiring.
- 11. Dress ground bus of large electrolytic away from mounting lug. Remove all excess slack from pilot light assembly and dress it close to 12.
- chassis base away from volume control.
- Dress oscillator grid capacitor (56 mmfd.) up and away from the screen and plate of 6SA7 socket.
- A-C leads to "off-on" switch should be kept away from tone control cable to reduce lum, 14.
- 15. Peaking coil should be dressed away from R-F grid resistor to reduce degeneration in R-F stage.
- Dress oscillator push button lead in weld clamp on front apron away from 220 mmf. series condenser,
- Keep all leads away from Phono.-FM jack to prevent audio oscillation and hum. Dress underneath the shield provided.

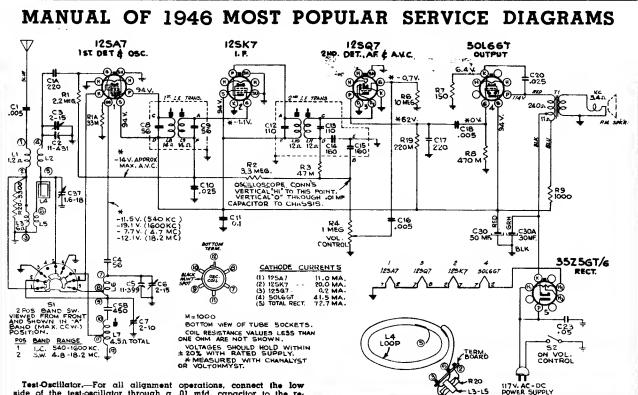
Push Button Adjustment

880 TO 1600 KC	740 7	0 1430	610 T	C 1520	540 TO 1030 KC
SCREWS	Ø	Ø	0	Ø	0
COBE -6	5	4	3	2	1
ROOS	ø	ø	0	ø	ø

The push buttons connect to separate magnetite-core oscillator coils and separate loop circuit trimmers which must be adjusted for the desired stations. Use an insulated screwdriver or alignment tool such as RCA Stock No. 31031. Allow about five minutes warm-up period before making adjustments.


The procedure is as follows:


- 1. Make a list of the desired stations, arranged in order from low to high frequencies.
- Turn the range switch to the broadcast position and manually tune in the first station on the list. 2.
- 3. Turn range switch to push-button position and press in the left-hand button.
- Adjust core rod No. 1 to receive the first station. To secure the best adjustment, rotate the loop for least pickup, and adjust core rod No. 1 4 for peak output.
- 5. Adjust trimmer screw No. 1 for peak output on the first station.
- 6. Proceed in the same manner to adjust for the remaining stations.
- 7. Repeat adjustments for best results,


On the 880 to 1,600 kc push-button, the higher frequency stations may be received with core rod No. 6 either in or out (oscillator frequency either 455 kc below or 455 kc above the station frequency). The adjustment with this core in its out position (oscillator frequency 455 kc above the station frequency) is the correct one.

NOTE: Clockwise adjustment of corea and trimmers tunea the circuits to lower frequencies.

SERVICE HINT:—If unable to reach 550-540 KC on No. 1 push button —Connect a Stock No. 33111 Capacitor-Ceramic-33 mmf across L19 (between switch contact which connects to high side of L19, and switch

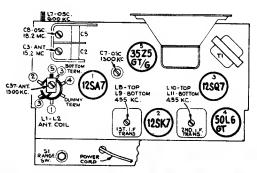
Test-Osciilator.—For all alignment operations, connect the low side of the test-oscillator through a .01 mfd. capacitor to the re-ceiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Steps	Connect high side of lest osc. lo—	Tune test osc. to	Turn radio dial 10—	Adjust fol- lowing for max. output—	
1	125K7 I-F grid through 0.1 mfd. capacitor	rid through 0.1 mfd. capacitor		L11-L10 (2nd I-F Trans.)	
2	Stator of gang cond. C2 (rear) through 0.1 mfd.	455 kc	B. C.; 1600 kc quiet point	L9-L8* (lst I-F Trans.)	
3	Antenna lead through	18.2 mc	S. W.; gang condenser open	C8 (osc.)**	
4	300 ohm resistor	15.2 mc	S. W.; maxi- mum signal rock gang	C3 (ani.)***	
5		600 kc	B. C.; 600 kc	L7 (osc.)	
8	Antenna lead through 200 mmí. capacitor	13 00 k c	B. C.; rock gang at 1300 kc	C37 (ani.) C7 (osc.)	
7		600 kc	B. C.; rock gang at 800 kc	L7 (03C.)	
	Repeat steps	8 and 7			

* Do not readjust L10 or L11 when test oscillator is connected to C2.

** Use minimum capacity peak if two peaks can be obtained. *** Image signal of lesser amplitude should occur at 14.3 mc.

NOTE.-Oscillator tracks above signals on both bands.


Radiola 61-6 and 61-7 Chassis No. RC-594D

L3-L5

RADIO CORPORATION OF AMERICA

Cathode-Ray Alignment is the preferable method. Connections for the oscilloscope are shown in the schematic drawing.

Output Meter Alignment .- If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Tube and Trimmer Locations

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

RCAVICTOR

Model Nos. 960001-1, 960001-2, 960001-3

Automatic Record Changer

Features

- This record changer is a two post drop type, non-intermixing mechanism designed to play automatically a series of twelve 10-inch or ten 12-inch records of the standard 78 RPM type.
- The mechanism uses a light weight, low noise, crystal pickup cartridge, equipped with a long life sapphire point.
- The tone arm is automatically returned to the rest position and the power removed from the drive motor, after the mechanism has finished playing the last selection of the stack.
- The changer is equipped with an eccentric and closed circle tripping device.
- 5. A pickup shorting switch is incorporated which shorts out the pickup during record change cycle. This prevents noise from gears, cams and other moving parts from being amplified through the reproducing system.
- The mechanical linkage between record support posts makes possible a single and simple operation on the part of the operator to change from 10 to 12-inch records or vice versa.
- The changer can be used on either a 50 or 60 cycle power supply by the use of the proper spring sleeve slipped over the shaft of the drive motor.
- 8. All gears and cams are disconnected while the records are being played. This removes the load on the motor and eliminates excessive friction and noise from moving parts which otherwise have a tendency to produce wow or rumble.

Automatic Operation

- Lift and turn the selector arm #1 in the front right-hand corner of the changer panel to a position engaging the slots in the selector sleeve. In so doing the arrows and numbers designating record size should be pointing toward the turntable spindle.
- Load the records to be played on the separator arms with the desired selections upward and in the proper sequence. The last record should be on top.
- Move control knob to "reject" position and release it. The changer will play the selections in the entire stack at which time the control knob will return to "off" position automatically.
- Lift and turn the selector arm to facilitate the removal of records on turntable.
 - Note: To stop mechanism before the selections in the entire stack have been played, move the control knob to "off" position, remove records on selector arms and lift and move the tone arm to rest position.

Model	Cartridge
960001-1 960001-2 960001-3	 39851 70332 39851

96000-2 and 96000-3 have an additional pickup shorting switch which contacts roller on tone arm lever (17) and shorts out pickup while tone arm is in the rest position.

Manual Operation

Old, odd sized and home recording records should be played in "Manual" position.

- Lift and turn selector arm until selector arms point outwurd as for unloading records.
- 2. Place records to be played on turntable and move control knob to "Manual" position.
- 3. Place pickup on record.
- 4. When selection is finished playing, return the tone arm to rest position and move control knob to "off" position.
 - Note: Do not move control knob to "off" position before placing tone arm in rest position, or cycling will result. If this should occur do not handle tone arm. Place control knob in automatic position and allow cycle to continue until tone arm comes to rest before continuing with manual operation.

Cautions

- Never use force to stop or rotate turntable or any other part of the mechanism.
- 2. Do not play a chipped or cracked record as damage to sapphire may result.
- 3. Warped records may slide upon one another while playing and cause unsatisfactory reproduction.
- 4. Do not attempt to handle tone arm while mechanism is in cycle.
- Do not allow records to remain on selector arms when not in use, particularly in warm climate.
- Do not allow oil or grease to come in contact with the rubber tire on drive idler or any other rubber parts.
- Do not attempt to move the tone arm horizontally when in the rest position, unless control knob is in the manual position.

Lubrication

- GREASE—Gears, all cams on large gear, tapered end of tone arm latch and tone arm lever with LUBRIPLATE #105 (Lubriplate Corp., 3211 South Wood St., Chicago).
- OIL—All shafts before inserting into bearing and all moving parts, except those to be greased, with AIRCRAFT IN-INSTRUMENT AND MACHINE GUN OIL, SPEC. 2-27E (Delta Oil Products, Milwaukee, Wis.).

Note: Keep grease and oil away from rubber parts such as drive idler, bumpers, etc.

Do not oil or grease clutch engagement lever.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Continued, RCA Victor Automatic Record Changer Models 960001-1, -2, -3.

Functions of Main Parts

I. Motor

The function of the motor is to serve as a power source for the changer. Power is transmitted from motor to turntable through the rubber-tired idler wheel.

II. Control slide and associate parts

A. General function is to provide a single knob control for the various operations shown on the escutcheon plate through its interaction with the changer mechanism.

B. The power switch is mechanically operated by the control slide through a linkage to correspond to the various positions on the escutcheon plate.

C. Manual Reject Slide (27), fig. (3)

1. Manual position—With the control slide in the "manual" position the formed end of the reject slide (27) fig. (16) engages the clutch engagement lever (33) and holds it in an up position so that the trip mechanism is inoperative.

2. Reject position—The short formed end of the reject slide (27), near the mid-section, contacts part of trip lever (28) and trips the mechanism.

D. Tone Arm Latch (14), fig. (3)

1. Functions as a positive lock, fig. (12), for the tone arm whenever the latter is moved to the outside of the panel in all positions of the control slide other than "manual".

2. Also functions as a partial lock, fig. (12), or detent, for the tone arm lever (17) while the control slide is in "manual".

E. Manual Lock Out (4). fig. (3)

Function is to engage and retain the tone arm locator (16), fig. (15), in its outermost position while the control slide is set in the "manual" position.

F. 10 and 12-Inch Set Lever (19), fig. (3)

Function is to index the tone arm properly for 10 or 12-inch records, fig. (19).

III. Spindle Housing, Gear Assembly, and Associated Parts

These two main castings are assembled with other component parts into a major sub-assembly, which includes a spindle and pinion. The assembly operates only in a counter-clockwise direction (viewed from bottom side) and provides a clutching and driving action for all automatic operation.

- A. Pinion Gear (37), fig. (5)
 - 1. Operates as part of the clutch.

2. Operates as a gear to drive the main gear through a change cycle.

3. Serves as a vertical stop for the spindle to which it is pinned.

B. Clutch Engagement Lever (33), fig. (5)

1. Function is to engage projection on pinion gear to start change cycle.

C. Trip Lever Assembly (28), fig. (4)

1. Function is to hold the clutch engagement lever (33), fig. (4) in a position such that it clears the pinion gear (37), fig. (5), except when tripping for cycling.

IV. Selector Arm and Blades

1. Function is to support the records and, together with the selector blades, to separate the lowest record of the stack and allow it to drop to the turntable during the change cycle.

V. Tone Arm Lever and Associated Parts

A. Tone Arm Lever (17). fig. (3) Controls the horizoital movement of the tone arm.

- NEL.
- B. Tone Arm Locator Lever (16), fig. (3) Function is to control the tone arm lever in determining landing position of the pickup, fig. (8).

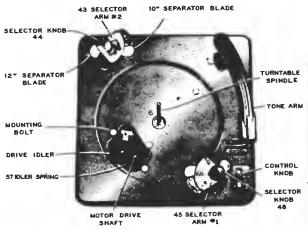


FIG. 1

C. Booster Spring (67), fig. (3)

A small piece of round spring wire which provides a limited amount of spring tension inward, tending to push the pickup into the starting groove.

VI. Tone Arm Lift Pin (51), fig. (24)

Function is to control vertical motion of tone arm.

VII. Selector or Support Arm Gears (35), (36), fig. (3)

> Function is to transmit energy from drive mechanismto selector arm and knives.

VIII. Trip Plate (Knurled) (30), fig. (3)

Contacts trip dog (31), fig. (4), for eccentric tripping.

IX. Trip Shoe (29), fig. (3) Functions as part of the closed circle tripping device.

- X. Segments (23), (25) and Tie Plate (24), fig. (3) Constitute the mechanical linkage between separator arms.
- XI. Drive Gear Stop Lever (34), fig. (6) Functions to stop and position drive gear after cycling.

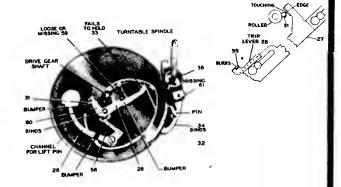
XII. Tone Arm Retard Lever (26), fig. (4) Stabilizes horizontal movement of tone arm while in cycle.

Miscellaneous Service Hints

I. Rumble

- A. Remove turntable by lifting straight up and inspect the drive mechanism for a delective idler wheel. (Rough rubber tire or very sloppy bearing.)
- B. Inspect the mounting of the changer to determine whether or not the mounting clamp nuts have been loosened.
- C. Check and replace any microphonic tubes in the reproducing system.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

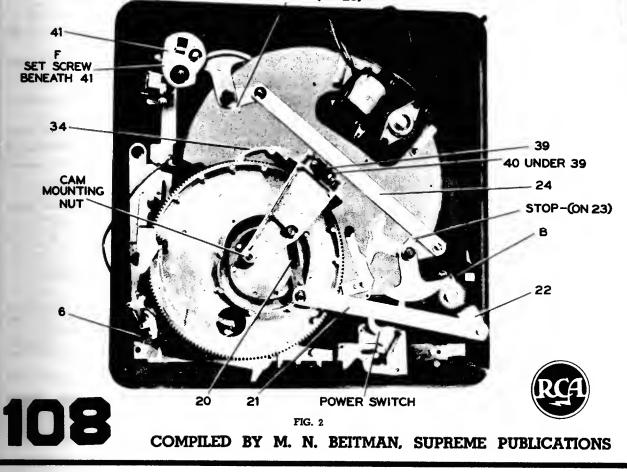

Continued, RCA Victor Automatic Record Changer Models 960001-1, -2, -3.

2. "Wow" or Speed Variation

- A. Make certain the turntable is free to rotate and not rubbing on motor board or portion of drive mechanism.
- B. With the mechanism out of cycle remove the turntable by lifting straight up. The spindle being disengaged from all portions of the drive mechanism should rotate freely when turned by hand.
- C. Check for badly worn idler as described in Item (1A).
- D. Check for presence of grease on rubber tire of drive idler and the inner rim of the turntable. (Naphtha or carbontetrachloride will remove harmful grease.)
- E. Bent turntable spindle.
- F. Insufficient tension of drive idler spring (57), fig. (1).

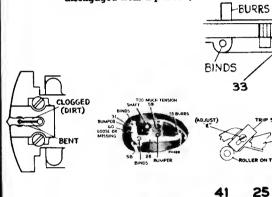
3, Continuous Tripping (see sketches below)

- A. Trip lever (28) fails to hold clutch engagement lever (33).
 - a. Loose or missing trip lever spring (59).
 - b. Bind in trip lever bearing.
 - c. Formed edge on manual reject slide (27) touching trip dog (31) (bend away).
- B. Bind in stop lever (34), fig. (2).
- C. Missing stop lever spring (61).
- D. Control knob fails to return to automatic position due to bind in control slide, and associated parts. Missing spring (64), fig. (3). STOP


4. Feed-back or Howl

This condition is caused by sound from the speaker getting back into the input of the amplifier.

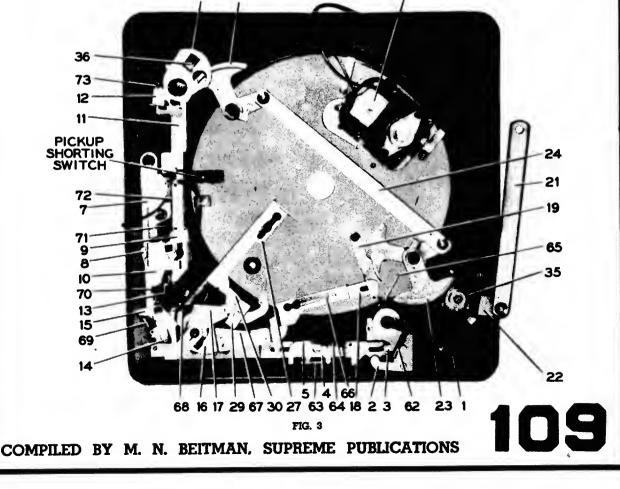
- A. Inspect motor board mounting to determine whether the clamp nuts have been loosened.
- B. Make certain no portion of the mechanism is touching the cabinet. The mechanism should be free floating on mounting springs.
- C. Check and replace any microphonic tube in reproducing system.


5. Failure to Trip (see sketches below)

A. Pickup jumping grooves due to improper pickup parts. pressure, or foreign material clogging up sapphire STOP-(ON 25)

Continued, RCA Victor Automatic Record Changer Models 960001-1, -2, -3.

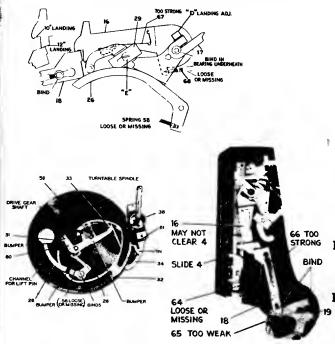
- B. Bind in trip dog (31), bearing or missing spring (60).
- C. Tripping adjustments improperly set.
- D. Trip lever spring (59) having too much tension.
- E. Burrs on trip lever (28).
- F. Bind in trip lever bearing.
- G. Bind in tone arm bearing.
- H. Clutch engagement lever (33) bent or binding. (It should be free to drop under its own weight when disengaged from trip lever.) 32



6. Insufficient power to complete cycle.

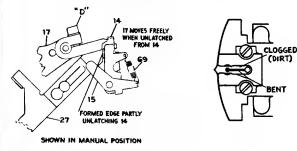
- A. Grease or oil on inner rim of turntable and rubber tire idler.
- B. Insufficient tension of spring (57), fig. (1), on drive idler.
- C. Defective drive motor.
- D. Binding in series of levers, pivots, etc.
 - a. Drive link assembly (20), fig. (2).
 - b. Selector arm shaft assembly, fig. (1).
 - c. Drive gear (32), fig. (4), shaft.
 - d. Poor gear mesh due to misalignment or defective teeth.
 - e. Bent record separator blades causing α jam, fig. (1).

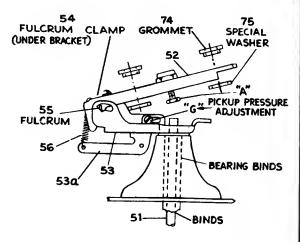
7. Records do not drop properly.


- A. Separator arms improperly timed. (See timing adjustments.)
- B. Bent separator blades.
- C. Bent turntable spindle.
- 8. Improper pickup landing (adjacent sketches)
 - A. Landing adjustment improperly set.
 - B. Bind in tone arm bearing.
 - C. Bind of slide (18) and lever (19) on studs.
 - D. Missing spring (65) or (66).
 - E. Bent or improperly shaped lever (16).
 - F. Missing or loose spring (68). DRIVE MOTOR

TRIP LEVER 26

Continued, RCA Victor Automatic Record Changer Models 960001-1, -2, -3.


- G. Spring (66) having more tension than spring (65).
- H. Spring (67) out of position causing false edge on lever (16).
- Tone arm fails to move in because of bind in slide (4), or faissing spring (64) keeping lever (16) latched.


9. Repeating grooves (see sketches below)

A. Insufficient pickup pressure.

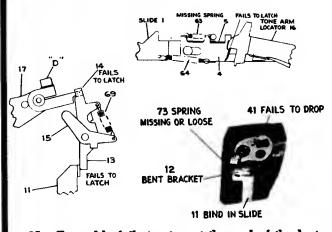
- B. Bind in tone arm pivot.
 - Place control knob in "manual" position and move tone arm in toward spindle and back. After the end of the tone arm lever (17) (functioning as a detent) leaves latch (14) the tone arm should have free and smooth action.
 - (If latch (14) is too positive, bend formed edge on manual reject slide (27) which contacts latcn (14).)
- C. Check for bind in tone arm lift pin (51).

- D. Sapphire shield filled with foreign material, preventing sapphire from setting into grooves.
- E. Bent sapphire mounting thereby allowing sapphire guard to ride on record.

10. Premature tripping.

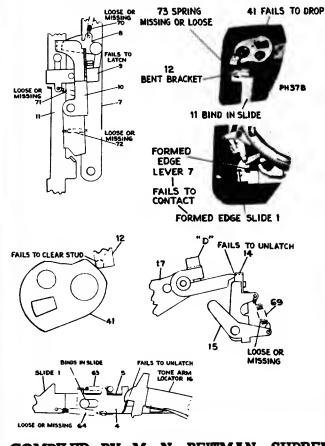
- A. Defective record,
- B. Trip shoe (29), fig. (3), improperly set.
- C. Trip lever spring (59), fig. (4), insufficient tension.
- D. Bind in trip dog (31), fig. (4), pivot.
- 11. Noise coming from speaker during record change cycle.

Pickup shorting switch failing to short out pickup.


12. No output.

- A. Defective crystal cartridge.
- B. Broken or bent sapphire mounting.
- C. Broken or shorted pickup cable.
- D. Pickup shorting switch making contact.
- E. Inoperative reproducing system.

13. Distorted output.


- A. Defective pickup cartridge.
- B. Bent or loose sapphire mounting, allowing sapphire to ride irregular in groove.
- C. Sapphire guard filled with foreign material such as dust and lint which accumulates on the records while in storage. (Remove with small brush.)
- Tone arm fails to go to rest position at the finish of the last selection (see sketches below)
 - A. Control knob fails to return automatically to "off" position.
 - 1. Cam (41) fails to drop down, thereby preventing stud on stop bracket (12) from contacting it.
 - 2. Missing stop bracket spring (73).
 - 3. Missing stud on bracket (12).
 - 4. Bind in shut off dog (8), fig. (3), and trip (9).
 - 5. Formed edge on slide (11) not locking tone arm latch (13).
 - 6. Tone arm latch (14) bent thereby not locking tone arm and allowing it to be pushed in by lever (16).

Continued, RCA Victor Automatic Record Changer Models 960001-1, -2, -3.

15. Turntable fails to stop at the end of the last selection (see sketches below)

- A. Defective motor swlich.
- B. Bind in levers actuating drive motor power switch, flg. (2).
- C. Control lever fails to move automatically to "off" position as described in 14Å—one to five.
- D. Small formed edge on lever (7) may fail to contact formed edge on slide (1) thereby not pulling slide (1) and not moving control to "off" position.

16. Pickup fails to move in for landing (see sketches below)

- A. Tone arm locator (16) lever fails to unlatch from slide (4).
- B. Tone arm lever (17) fails to unlatch from tone arm latch (14).
- C. Missing spring (69).
- D. Bent shut off slide bracket (12) which may allow cam (41) to contact at incorrect time.
- E. Weak or missing spring (73), fig. (3), thus allowing slide (11) to move in and lock latch (13).

17. Power is removed from motor as pickup lands on record.

- A. Shut off slide bracket (12), fig. (3), may be beni.
- B. Low tension or missing spring (73), fig. (3).

Removing Main Assemblies

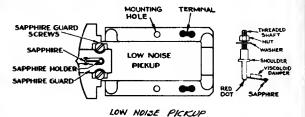
Removing Turntable

To remove turntable, lift straight up with a rotary motion.

Removing Separator Arms

To remove separator arm, loosen set screws and lift off.

Removing 12 in. Separator Blade


Remove Separator arm and by the use of a small screw driver remove the small screw up inside the separator sleeve (see fig. (21)). This removes the knob and 12 in. blade. The 10 in. blade is not removable.

Removing Sub-casembly

To remove the large gear sub-assembly, remove the turntable and remove the two small screws on either side of the turntable spindie. Also remove the large nut holding the gear shaft. The entire gear bracket, etc., can be removed easily.

Removing Tone Arm

To remove the tone arm from the mounting bracket, it is necessary to remove the two screws located under the pivot end of the tone arm. These screws are more accessible if the bracket and shaft are removed by loosening bolt "D" as indicated in fig. (16).

Note: Stock #39851 has red dot on bottom of sapphire holder, 13.5 mil. dia. sapphire mounting wire, but no viscoloid damper. Stock #70332 has viscoloid damper on sapphire mounting wire.

Repaicement of Sapphire

Caution: Never bend the sapphire support wire.

The nut on the sapphire holder assembly is locked by a light coment (such as Glyptal). Extreme care should be used when loosening the nut so that the twisting motion does not break the crystal.

Remove the two screws holding the sapphire guard in place and remove guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and push the shaft through the hole in the mounting until the sapphire holder assembly comes free.

Automatic Cycle of Operation

	1	
Function	Explanation	
Lift and turn selector arm as required for 10- or 12-inch records, Place stack of records on arms.	through the mechanical linkage of gear (35), fig. (19), segment (23), tie plate (24), segment (25) and gear (36).	59 33 TURNTABLE SPINDLE
Push control lever to reject position and re- lease.	 Control slide (1), fig. (3), actuates manual reject slide (27) through coupling link (6), fig. (2). Manual reject slide (27), fig. (3), pushes against stud above small roller on trip lever (28), fig. (4). The action of trip lever (28), fig. (4), unlatches clutch engagement lever (33) allowing it to drop and engage projection on pinion gear (37), fig. (5). This engagement between lever (33) and pinion gear (37) causes the teeth of drive gear (32) to engage the teeth of pinion gear (37) starting cycle. 	CHANNEL POR LIFT PIN 32
Drive gear (32) rotates.	 Gear (32), fig. (6), rotates with stop lever (34), leaving notch and at the same time pickup shorting switch leaving raised portion of gear causing it to close, shorting out the pickup. Roller on drive link (20), fig. (19), follows channel in drive cam. Energy is transferred from drive link (20) to separator arm #1 through drive link (21), arm (22) and sleeve (47), fig. (17). Separator arm #1 connected to gear (35), fig. (19), starts rotating. Separator arm #2 mechanically linked through gear (35), segment (23), tie plate (24), segment (25) and gear (36) follows. 	33 PROJECTION FIG. 5
Tone arm moves out.	 As the channel cut in rotating gear (32), fig. (9), moves, lift pin (51) raises contacting adjustment screw "A", fig. (24), on tone arm and raising tone arm. Roller located on end of tone arm lever (17), fig. (8), comes in contact with portion of carh on gear (32), fig. (4), and is pushed outward and against ione arm locator lever (16), fig. (8), which is held under tension of spring (68). Tone arm is locked by tone arm latch (14), fig. (12), and held from being pushed in by locator lever (16), fig. (8). As drive gear continues to rotate, clutch engagement lever (33), fig. (5), is returned to normal position by sliding against edge of tone arm lever (17), fig. (8), as gear supporting it passes by. 	FIG. 6
Separator arms rotate and drop record to turntable.	 Blades separate lower record from stack and support the stack while the record is being dropped. Record drops. Tone arm lever (17) is unlatched from latch (14), fig. (7), due to latch (15) making a momentary contact with raised portion of gear. 	FIG. 7
443	 Tone arm lever (17), fig. (8), which is connected to tone arm is being moved in by locator lever (16) which is working under the tension of spring (68). During this motion tone arm lever (17) is stabilized by tone arm retard lever (26) until lo- cator lever (16) engages slide (18) to determine 10- or 12-inch landing position. Pickup is lowered to the record by lift pin (51), fig. (9), mov- ing into channel in gear. An instant before rotating gear comes to the rest position and stop lever (34), fig. (4), engages notch in gear (32), the pickup shorting switch is opened due to the blade coming in contact with raised portion of gear (32). As pickup is landing and gear is returning to normal posi- tion the stud located on underside of gear (32) pushes shut-off bracket (10), fig. (13), outward. The action at this point is not transferred since shut-off dog (8), fig. (10), and shut-off trip (9) are not latched thereby allowing shut-off bracket (10) to slip by over the curved portion of the shut-off dog (8). If shut-off COMPILED BY M. N. BEITMAN, 	FIG. 9 SUPREME PUBLICATIONS
112	are not latched thereby allowing shut-off bracket (10) to slip by over the curved portion of the shut-off dog (8). If shut-off	GEAR 32 FIG. 9

Include (10) Biold contact straight edge of abund (100 (8) or it does where the straight edge) (10, 00, 00, emposite the straight edge) (10, 00, 00, 00, 00, 00, 00, 00, 00, 00,	MANUAL	OF 1946 MOST POPULAR S	ERVICE DIAGRAMS
1. In the case of an eccentric grooms the tone part (17), fig. (10), constant of the trip plote (13), fig. (13), constant of the case of a record with a close close trip lever (13), fig. (13), constant of the case of a record with a close close trip lever (13), fig. (13), constant of the case of a record with a close close trip lever (13), fig. (13), constant of the case of a record with a close close trip lever (13), fig. (13), constant of the case of a record with a close close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (13), constant of the close trip lever (13), fig. (14), constant fig. fig. (14), constant fig. fig. (13), constant of the close trip lever (13), fig. (14), constant fig. fig. (15), constant of the close trip lever (13), fig. (14), constant fig. fig. (15), constant of the close trip lever (13), fig. (14), constant fig. fig. (15), is constant fig. fig. (15), constant fig. fig. (15), constant fig. fig. (15), constant fig. fig. (15), cons		does when latched to shut-off trip (9), shut-off lever (7) would pull slide (1), fig. (3), and remove power from drive motor. 5. The instant pickup lands, feed-in spring (67), fig. (8), pushes	
Inc. (a): moves in cond the trip pipe (a): fig. (b), encodes the fig. (b): moves (c): fig. (c): specific (c): fig. (c):	Record plays.	1. Pickup moves toward center of record and into trip groove.	9
 A. In this case do a record with a closed close try is the try is with a standard on the prevent is the very (20). By (1), By (2), By		fig. (3), moves in and the trip plate (30), fig. (4), engages trip	
tree stock exionet: Separating and dropping records, tripping, etc. 1. Up to this time shueff cam (4h, fig. (2l), located on bottom of adoeted or mile 2 has been held up by weight of records in selector arm. I. Up to this time shueff cam (4h, fig. (2l), which is protructing through selector arm. 2. Fickup moves into trip, cand drive geer (32), fig. (2), which is protructing through selector arm. Since cam (1), fig. (11), how dropped and is rotating with selector arm. #2 is surface contexts, stud on shueff islde (11), fig. (14), tocks tree arm is context. FIG. 11 0. Since cam (11), fig. (12), locake tree arm lefth (13), during the time, portion of the rotating twice geer is contexting trip. FIG. 11 0. Since cam (11), fig. (12), locake tree arm lefth (13), fig. (3), no rotated on underside of gerr (32) contexts and pathed in by the second maked (10) context fills (11), fig. (12), ord shueff three fills (12), fig. (13), ord shueff three fills (13), fig. (14), ord shueff three fills (13), fig. (13)		shoe (29), fig. (23), pushes against roller on trip lever (28), fig.	hand
dropped and record and of selector arm #2 has been held up by weight of secords and abut off selector backet (50), fig. (20), which is protructing is an elector arm selector arm arm are arm aretarm selector arm ar	tire stack automati-	Separating and dropping records, tripping, etc.	
 Pickup moves into inp. and drive geer (32), ig. (4), starts rocking. Since cam (4), fig. (1), has dropped and is rotating with selector cam £ 1 is surface contexts, sut do an shut off slide (1), fig. (12). This transmits energy to shut off slide (1), fig. (12). This transmits energy to shut off slide (1), fig. (12). It is unscent is not context, sut do an shut off slide (1), fig. (12). It is unscent is into move is a context, sut do an shut off slide (1), fig. (12). This transmits energy to shut off slide (1), fig. (12). It is unscent is into move is a context, sut do an shut off slide (1), fig. (12). It is unscent is into move is a context, sut do and shut off slide (1), fig. (13). It is unscent is into move is into the difference is a context, sut do and shut off the prover (12). The subtored is the unscent on subtored is into the fig. (13). It is outward. Since shut off is (13), fig. (13). It is outward movement context (10) outward. The shut off the prover (10) is the difference (10) context flat surface of shut off the (1). It is outward movement context is provement context is provement context is provement in the difference (10) context flat surface of shut off the (1). It is outward movement context is provement in the difference (1) to it is outward movement context is provement in context (1) is an origoning off the power to the difference (1) to its way each hore when its on suite (2) public quart (1) is an origoning off the power (1) to an and the off the power (1) to an and the origon is moved more (1) to an and the origon is more (1) to its way each is no start (2). It is a moved. Allem wrenches register of flot, is net screws, stock #22113. Jilis in between flots, for 5116 in, set screws, stock #28281. Allem wrenches flots, for 5116 in, set screws, stock #28281. 	dropped and record	end of selector arm #2 has been held up by weight of records on selector arm applying pressure on the small raised portion of shut-off selector bracket (50), fig. (20), which is protruding	
selector corm #2 its surdace contexts stud on shut-off side bracket (12). This transmits energy to shut-off side (1) 4. Shut-off side (1)), fig. (2). locks tone corm inch (1) during the time, portion of the roteting drive gear is contexting tone corm levels (1), fig. (2). const tone corm inch (15), fig. (2), once tone corm remaining lotched, prevents it from being pushed in by locator lever (18), fig. (3), located on underside of gear (32). Const to rest stud. fig. (13), located on underside (1) fig. (3), pulling control knob to (10), fog. (3), pulling control knob to (10), fig. (3), pulling control knob to (10), posting control knob to (10), fig. (14), and shut-off they for posting. culture in the gear manual. Manual Exploration Punction Exploration Punction Exploration I. Side (1), fig. (2), supporting-control knob mores cond posting (10), fig. (10), cong to posting control knob to (16) cond prevent it from pushing tone conneculty. 2. Side (1), fig. (3), close energizing manual reject side (27), fig. (16), so can to have the lip on side (27) push against tose cont lock (16) contor (16) contor (17) to solido, culture to posting control knob to more prevent it from engoging offset in philon gear (37), fig. (3), one can experil (17), fig. (3), into control (16) contor (17) to solido, culture to contor to knob thito contor (16) conto contor contor to hore cont lock (17) to solid			FIG. 11
4. Shucht side (1), fig. (12), locks tone arm letch (13) ione arm letch (13), fig. (7), and tending to unletch it. The tone arm memoling letched, prevents it from being pushed in by locator lever (16), fig. (8). 5. Tone arm is lowered to rest as lift pin (51), fig. (9), goes into channel in geen (32). 6. As geer (32) contexts and pushes shutoff break to (10) outword. Since shutoff dog (8) mushing shutoff breaks that off b		selector arm #2 its surface contacts, stud on shut-off slide bracket (12). This transmits energy to shut-off slide (11), fig.	
 5. Tone arm is lowered to rest as lift pin (51), fig. (8), goes into channel in gear (32). 6. As gear (32) comes to rest stud, fig. (13), located on under the state of gear (32) contacts and pushes shut-off bracket (10) outward. Since shut-off bracket (10) outward. Since shut-off bracket (10) outward. 7. Shut-off lever (7) in its outward movement contacts lip on slide (1), fig. (3), pulling control knob to 'off' position. cutting off the power to the drive motor. During this action, shut-off tracket (10) outward. 7. Shut-off lever (7) in its outward movement contacts lip on slide (1), fig. (3), supporting-control knob moves and postilate (1), fig. (3), supporting-control knob moves and postilate (4) engage and hold tone arm locator (16) and prevent it from pushing tone arm lever (17), fig. (8), in for plakup and ing. 2. Slide (1), fig. (3), close energizing manual reject slide (27), fig. (6), is or to have the lip on slide (27) push against tone arm lever (17), fig. (8), in for plakup and ing. 3. The movement of manual reject slide (27) has a postitioned the slide so as to lock the clutch engagement lever (17) to shave at lock the clutch engagement lever (17) to shave and of manual. Allen wrenches required for adjustments an set screws #10 and 12, stock #2211. 5/32 in between ficts, for 3/16 in set screws, stock #2213. 3/16 in between ficts, for 3/16 in set screws, stock #2213. 3/16 in between ficts, for 3/16 in set screws, stock #2213. 3/16 in between ficts, for 3/16 in set screws, stock #2213. 		4. Shut-off slide (11), fig. (12). locks tone arm latch (13) during the time, portion of the rotating drive gear is contacting tone arm latch (15), fig. (7), and tending to unlatch it. The tone arm remaining latched, provents it from being pushed in by	2
6. As geer (32) connects and pushes shut-off proceed in underside of geer (32) contexts and pushes shut-off bracket (10) contexts file (10) contexts file shut-off trip (8) or elacted i. Shut-off bracket (10) contexts file shut-off trip (8) or elacted i. Shut-off lever (7) outword. 7. Shut-off lever (7) in its outward movement contexts lip on side (1), fig. (3), pulling control knob to "off" position, cutting this action, shut-off dog (8), fig. (14), and shut-off trip (9) are unkatched. Manual Cycle Function 1. Silde (1), fig. (3), supporting-control knob moves and positions withing tone arm lever (17) for group withing tone arm lever (17), fig. (8), in for pickup leading. 2. Silde (1), fig. (3), clase energizing manual reject slide (27), fig. (16), so cas to have the lip on slide (27) push against tone arm lever (17) to slip by when tone arm lever (17), fig. (8), in for pickup leading. 3. The movement i monual regist slide (27) has so positioned the slide so cas to lock the clutch engagement lever (33) and prevent it from engaging offset in pinion gear (37), fig. (5), when trip lever (28), fig. (16), is moved. Alleen wreaches repaired in a dist, for Allen wreaches required for adjustments. Alleen wreaches repaired for soly fig. in between flats, for 5/16 in set screws, stock #2581. Alleen in between flats, for 5/16 in set screws, stock #2581.			
7. Shuiofi lever (7) in its outward movement contacts lip on slide (1), fig. (3), pulling control knob to "off" position, suiting off the power to the drive motor. During this action, shut-off dag (8), fig. (14), and shut-off trip (9) are unlatched. Fig. 12 Manual Cycle Image: Second colspan="2">Image: Second colspan="2">Second colspan="2" Punction Explanation Image: Second colspan="2">Side (1), fig. (3), suppring-control knob moves and positions "manual" lock-out slides (4) and (5), fig. (5), so as to hore alide (4) engage and hold tone arm locator (16) and prevent it from pushing tone arm lever (17), fig. (8), in for pickup landing. 2. Slide (1), fig. (3), also energizing manual reject slide (27), fig. (16), so cars to hore slide (27) push against tone arm lever (17) to the very edge. This permits tone arm lever (17) to allo by when tone arm is moved manually. 3. The movement of manual reject slide (27) has so positioned the slide so as to lock the clutch engagement lever (33) and prevent it from engaging offset in pinon gear (37), fig. (5), when trip lever (28), fig. (16), is moved. Allen wrenches repare to firs, for Allen wrenches required for adjustments. Allen wrenches required for adjustments. Not wrenches repare flats, for 3/16 in, set screws, stock #22113. 3/32 in. between flats, for 3/16 in, set screws, stock #22581.		6. As gear (32) comes to rest stud, fig. (13), located on under- side of gear (32) contacts and pushes shut-off bracket (10) outward. Since shut-off dog (8), fig. (14), and shut-off trip (9) are latched, shut-off bracket (10) contacts flat surface of shut-off	11
Function Explanation Push control knob to maximual 1. Slide (1), fig. (3), supporting-control knob moves and positions "manual" lock-out slides (4) and (5), fig. 15), so as to have slide (4) engage and hold tone arm locator (16) and prevent it from pushing tone arm lever (17), fig. (8), in for pickup landing. 0 2. Slide (1), fig. (3), also energizing manual reject slide (27), fig. (16), so as to have the lip on slide (27) push against tone arm lever (17) to the very edge. This permits tone arm lever (17) to slip by when tone arm is moved manually. FIG. 13 FIG. 14 3. The movement of manual reject slide (27) has so positioned the slide so as to lock the clutch engagement lever (33) and prevent it from engaging offset in pinion gear (37), fig. (5), when trip lever (28), fig. (16), is moved. SLIDE 1 63 5 TONE ABAM Allen wrenches reguired for adjustments. 3/32 in. between fiats, for Allen wrenches required for adjustments. SI observes fiats, for Allen wrenches required for adjustments. FIG. 15 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		7. Shut-off lever (7) in its outward movement contacts lip on slide (1), fig. (3), pulling control knob to "off" position, cutting off the power to the drive motor. During this action, shut-off	FIG. 12
Push control knob to 1. Slide (1), fig. (3), supporting-control knob moves and positions "manual" lock-out slides (4) and (5), fig. 15), so as to have slide (4) engage and hold tone arm locator (16) and prevent it from pushing tone arm lever (17), fig. (8), in for pickup landing. 2. Slide (1), fig. (3), also energizing manual reject slide (27), fig. (16), so as to have the lip on slide (27) push against tone arm lever (17) to the very edge. This permits tone arm lever (17) to slip by when tone arm is moved manually. 3. The movement of manual reject slide (27) has so positioned the slide so as to lock the clutch engagement lever (33) and prevent it from engaging offset in pinion gear (37), fig. (5), when trip lever (28), fig. (16), is moved. FIG. 13 FIG. 14 Allen wrenches reguired for adjustments. 3/32 in. between ficts, for Allen wrenches required for adjustments. 3/32 in. between ficts, for 5/16 in. set screws, stock #22113. 3/16 in. between flats, for % in. set screws, stock #26581. FIG. 15 FIG. 15		Manual Cycle	
 manual. tions "manual" lock-out slides (4) and (5), fig. 15), so as to have slide (4) engage and hold tone arm locator (16) and prevent it from pushing tone arm lever (17), fig. (8), in for pickup landing. 2. Slide (1), fig. (3), also energizing manual reject slide (27), fig. (16), so as to have the lip on slide (27) push against tone arm latch (14), moving the point of contact on tone arm lever (17) to the very edge. This permits tone arm lever (17) to slip by when tone arm is moved manually. 3. The movement of manual reject slide (27) has so positioned the slide so as to lock the clutch engagement lever (33) and prevent it from engaging offset in pinion gear (37), fig. (5), when trip lever (28), fig. (16), is moved. Allen wrenches reguired for adjustments. 3/32 in. between facts, for Allen wrenches required for adjustments. 3/32 in. between facts, for 5/16 in. set screws, stock #22113. 3/16 in. between flats, for 3% in. set screws, stock #26581. 	Function	Explanation	
fig. (16), so as to have the lip on slide (27) push against tone arm latch (14), moving the point of contact on tone arm lever (17) to the very edge. This permits tone arm lever (17) to slip by when tone arm is moved manually. FIG. 13 FIG. 14 3. The movement of manual reject slide (27) has so positioned the slide so as to lock the clutch engagement lever (33) and prevent it from engaging offset in pinion gear (37), fig. (5), when trip lever (28), fig. (16), is moved. SLIDE I 53 5 TONE ARM LOCATOR is to positioned the slide so as to lock the clutch engagement lever (33) and prevent it from engaging offset in pinion gear (37), fig. (5), when trip lever (28), fig. (16), is moved. SLIDE I 53 5 TONE ARM LOCATOR is to position of a diget in pinion gear (37), fig. (5), when trip lever (28), fig. (16), is moved. Allen wrenches re- guired for adjustments. 3/32 in. between ficts, for Allen wrenches required for adjustments. FIG. 15 FIG. 15 5/32 in. between ficts, for 5/16 in. set screws, stock #22113. 3/16 in. between ficts, for 3/16 in. set screws, stock #26581. FIG. 15 FIG. 15		tions "manual" lock-out slides (4) and (5), fig. 15), so as to have slide (4) engage and hold tone arm locator (16) and prevent it from pushing tone arm lever (17), fig. (8), in for pickup land-	
Allen wrenches re- quired for adjustments. 3/32 in. between fiats, for Allen wrenches required for adjust- ments on set screws #10 and 12, stock #22111. 5/32 in. between fiats, for 5/16 in. set screws, stock #22113. 3/16 in. between flats, for % in. set screws, stock #26581. FIG. 15		fig. (16), so as to have the lip on slider (27) push against tone arm latch (14), moving the point of contact on tone arm lever (17) to the very edge. This permits tone arm lever (17) to slip	FIG. 13 FIG. 14
Allen wrenches re- guired for adjustments. 3/32 in. between fiats, for Allen wrenches required for adjust- ments on set screws #10 and 12, stock #22111. 5/32 in. between fiats, for 5/16 in. set screws, stock #22113. 3/16 in. between flats, for 3/6 in. set screws, stock #26581. FIG. 15	-	tioned the slide so as to lock the clutch engagement lever (33) and prevent it from engaging offset in pinion gear (37), fig. (5),	IONE ARM LOCATOR IS
5/32 in. between flats, for 5/16 in. set screws, stock #22113. 3/16 in. between flats, for 3/6 in. set screws, stock #26581. FIG. 15		3/32 in. between ficts, for Allen wrenches required for adjust- ments on set screws #10 and 12 stock #22111	
of to hit. Between hous, for 78 m. set sciews, stock #20001.			
	COMPILED BY		

Continued, RCA Victor Automatic Record Changer Models 960001-1, -2, -3.

4. All portions of the cycling mechanism are locked during manual operation and remain stationary with the pickup shorting switch in the off position at all times, excepting Models -2 and -3 which have an additional switch, shorting out pickup when tone arm is in the rest position.

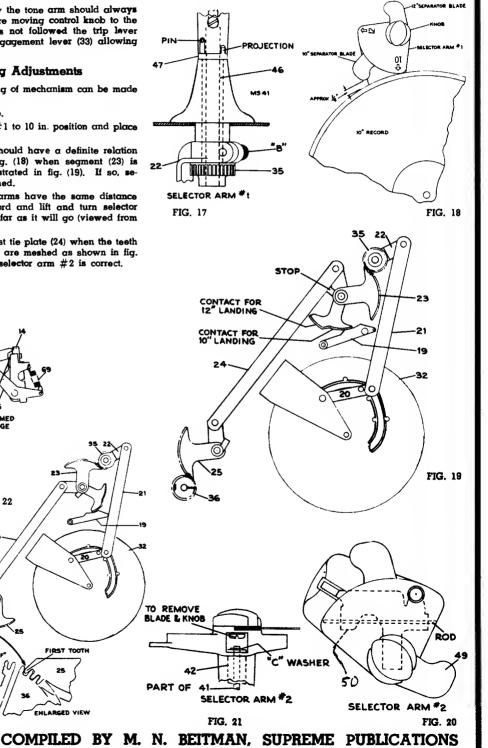
Note: When operating manually the tone arm should always be returned to rest position before moving control knob to the off position. If this procedure is not followed the trip lever (28) may not hold the clutch engagement lever (33) allowing it to drop and start cycle.

Check on Timing Adjustments

A guick check for correct timing of mechanism can be made by:

- 1. Have mechanism out of cycle.
- 2. Lift and turn separator arm #1 to 10 in. position and place a 10 in. record on arms.
- 3. The 10 in, separator blade should have a definite relation to record as illustrated in fig. (18) when segment (23) is against tie plate (24) as illustrated in fig. (19). If so, selector arm #1 is correctly timed.
- 4. If the 10 in. blades of both arms have the same distance from the record, remove record and lift and turn selector arm #1 counterclockwise as far as it will go (viewed from top).
- 5. Segment (25) should be against tie plate (24) when the teeth of segment (25) and gear (36) are meshed as shown in fig. (22). If this exists, timing of selector arm #2 is correct.

FORMED EDGE


FIG. 22

STO

FIG. 18

Timing Adjustments for Record Separators

- 1. Make certain mechanism is out of cycle and all parts in their proper place by comparing the mechanism with sketches and photographs.
- 2. Remove "C" washer on bearing of segment (23), fig. (19), and disengage the teeth of segment (23) and eslector arm aear (35).

Continued, RCA Victor Automatic Record Changer Models 960001-1, -2, -3.

- 3. Selector arm #1, fig. (17), should be in place with the pin of selector shaft engaged in the large slot of selector arm and the small projection of selector arm sleeve (47) engaged in the small slot of the selector arm. Arm (22), fig. (19), should also be in place and connected to the drive link (20) and drive link connecting rod (21).
- 4. Loosen set screw "B", fig. (17), and wedge some object such as a screw driver in the clamp of arm (22) so as to allow free movement of selector arm sleeve (47).
- 5. Place 10-inch record on selector arms and turn selector arm #1, fig. (18), until the 10-inch blade is approximately 1/4 inch from the edge of the record.
- 6. Tighten set screw "B", fig. (17).
- 7. Rotate the disengaged segment (23), fig. (19), clockwise until tie plate (24) comes against stop on segment (23). Hold in this position while engaging teeth of segment (23) and teeth of gear (35).
- 8. Replace "C" washer on segment (23).
- 9. Remove "C" washer on rod (41), fig. (21) (under selector arm #2) and remove cam and rod (41).
- 10. Remove "C" washer on bearing of segment (25), fig. (22), and disengage teeth of segment (25) and gear (36).
- 11. Lift and rotate selector arm #1, fig. (22), counter-clockwise until stop on segment (25) is against tie plate (24).
- 12. Engage teeth of segment (25) and gear (36) so as to have the first tooth of segment gear (25) engage the gear (36) between the first and second tooth next to slot as shown in sketch, fig. (22). Replace "C" washer or bearing of segment (25).
- 13. Loosen set screw "F" and rotate selector arm #2 until ten inch separator blade is the same distance from the edge of the record as selector arm #1, fig. (18).
- 14. Tighten set screw "F", fig. (22).
 - Note: Do not try to position separator arm #2 by loosening small set screws on arm proper. The factory has countersunk the shaft, seating the set screws.
- Replace cam (41), fig. (21), with the end going up through hole in plate (50), fig. (20). Insert "C" washer, fig. (21), to hold in place.

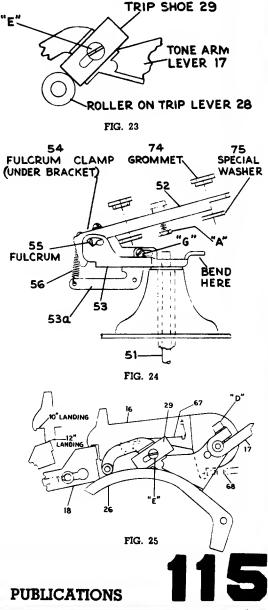
Tripping Adjustment

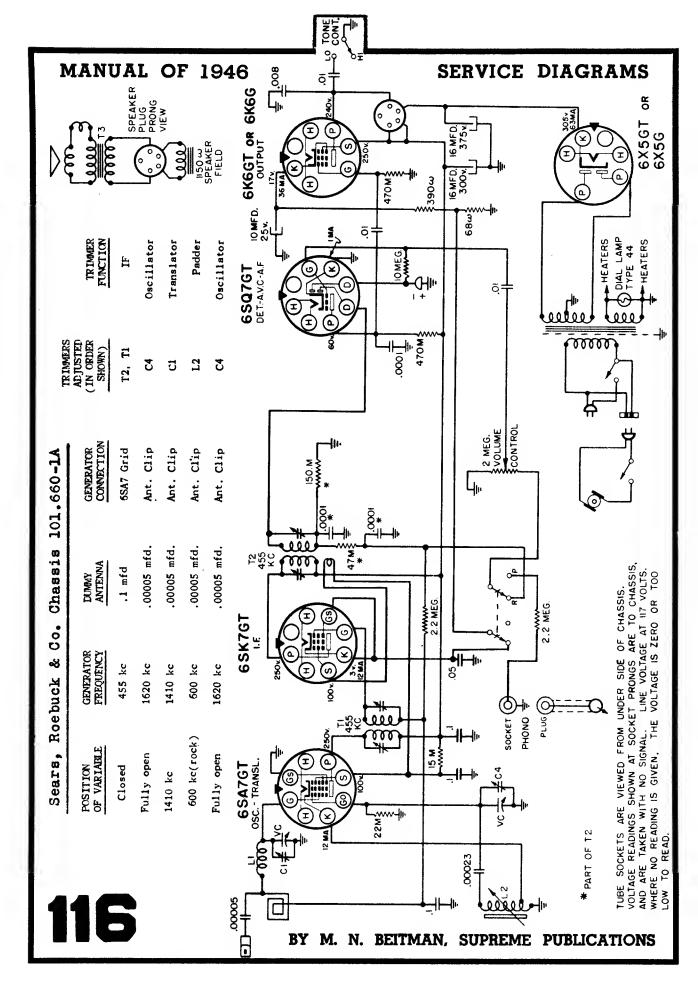
No eccentric tripping adjustment is necessary. It is automatically adjusted when landing adjustment is made.

For closed circle trip, loosen set screw "E", fig. (23), and set trip shoe (29) so as to contact roller on trip lever (28) when the sapphire is approximately 15%" from side of turntable spindle.

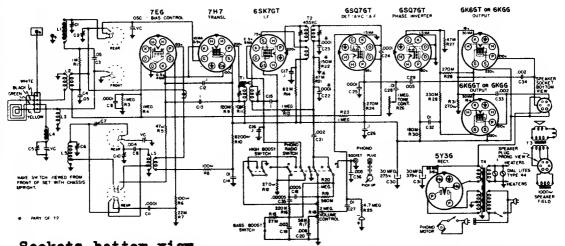
Tone Arm Height Adjustment

- 1. The height of the tone arm while in the rest position is that which will allow the bottom edge of the tone arm and cartridge to clear the turntable surface by $\frac{1}{16''}$. The height is adjusted by bending the formed edge on lower half of tone arm bracket fig. (24).
- 2. Tone arm height adjustment screw "A", fig. (24), should
- be so adjusted to allow a clearance of $\frac{1}{16}$ inch between tone arm and record on selector arm while mechanism is in cycle.


Pickup Pressure Adjustment


By the use of a pocket postal scale hocked on the sapphire end of the tone arm, loosen set screw "G", fig. (24), and move slide until tension of spring (56) allows 1 to 11/4 oz, pickup force for model 960001-2 and $1\frac{1}{2}$ to $1\frac{3}{4}$ oz. for models 960001-1 and 960001-3.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS


Landing Adjustment

- 1. With the power removed from the mechanism, place a 10inch record on the turntable and turn the selector c.m to 10-inch position.
- 2. Push selector knob to reject and release.
- 3. Push down on the small section of lever (50), fig. (20), which protrudes through selector arm #2 and rotate turntable by hand until the pickup is about to land.
- 4. Loosen set screw "D", fig. (25).
- 5. Hold tone arm lever (17) against tone arm locator (16) with just enough force so as not to have tone arm locator (16) move away from slide (18).
- 6. While holding the position as stated in "5," move pickup to the landing point on the record. Leave very little vertical play in tone arm bearing but just enough to have free motion of tone arm. Tighten set screw "D".
- 7. Apply power to mechanism and test by playing through a stack of records.
 - Note: Twelve-inch record landing will automatically be adjusted while adjusting 10-inch landing.

SEARS, ROEBUCK AND CO. Chassis 101.662-2B, and -2D

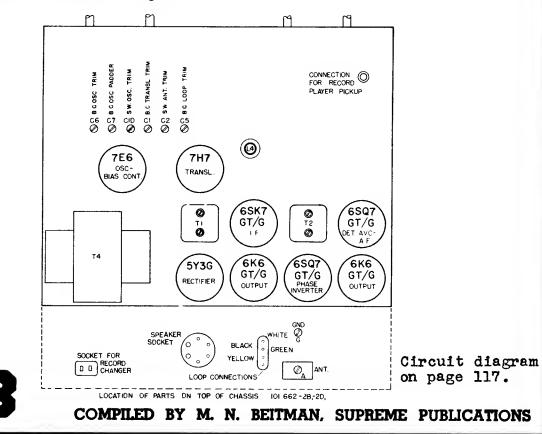
Sockets bottom view. Voltage readings socket prongs to chassis, wave switch in "Broadcast," no signal, line 117 volts A.C.

PARTS LIST FOR CHASSIS

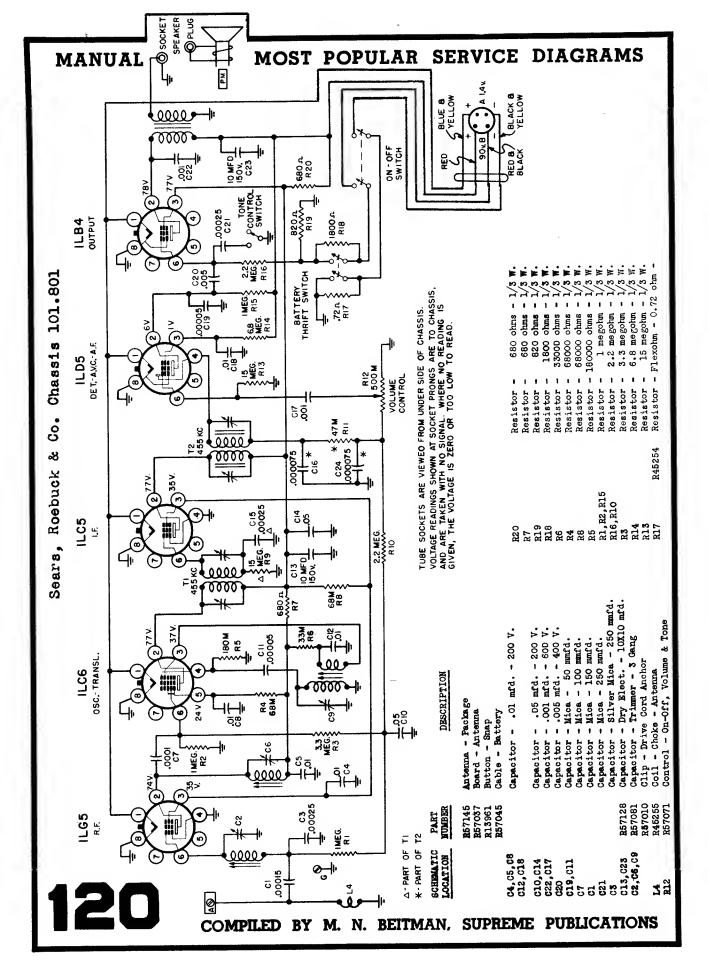
SCHEMATIC LOCATION	PART NUMBER	DESCRIPTION	SCHEMATIC LOCATION	PART NUMBER	DESCRIPTION
	R17998	Board - Antenna		R59053	Log - BC, & S,W. Statione
	R45512	Board - Terminal - Loop		R57216	Loop - Complete
	R57285	Buttons - Push (High Boost, Bass Boost, Phono-		R18112	Mounting - Biss Cell
		TelFreq. Mod.) (Cat. #6104A)		R57192	Needle - Phono
	R57205	Buttons - Push (High Boost, Baes Booet, Phono-		R16039	Pin - Loop Lead
	R57284	TelFreq. Nod.> (Cat. #6105A) Buttons - Push Stations (Cat. #6104A)		R57207 R18477	Pointer - Diel
	R57204	Buttons - Push Stations (Cat. #6105A)		R43416	Pulley - Wood, 1srge Pulley - Wood, emmil
C30,C31	R45829	Capecitor - Elec. 30 mfd, 275 V; 30 mfd, 375 V.	R3, R4, R13	A 10 100	• •
cau, car	A73049	Capacitor - Elec. 30 mrd. 2/5 V; 30 mrd. 3/5 V;	R20,R23		Resistor · 1 megohm, 1/3 Watt
C1.C2.C5			R25		Resietor - 4.7 megohm, 1/3 Wett
C6.C7,C10	R47199	Capacitor - Trimmer - 6 Gang	R1 R11		Resistor - 1M ohma, 1/3 Watt Resistor - 10M ohma, 1/3 Watt
			R7		Resistor - 104 onna, 1/3 watt Resistor - 2214 ohms, 1/3 Watt
C15,C16		Capecitor1 mfd. 200 V.	R15		Resistor - 27M ohms. 1/3 Watt
C12.C13			R21, R27		Resistor - 47M ohms, 1/3 Watt
C17,C26		Capacitor1 mfd. 400 V.	R 17		Registor - 56M ohms, 1/3 Wett
			R14		Recietor - 82M ohms, 1/3 Watt
C14,C28		Capacitor - ,01 mfd. 400 V.	R9		Resistor - 120M ohms, 1/3 Wett
C27,C32		Capacitor01 mfd. 600 V.	R30 R16, R24		Recietor - 180M ohma, 1/3 Watt Basistor - 220M ohma, 1'3 Watt
C3.C4		Capacitor05 mfd, 200 V.	R28		Resistor - 220M ohms, 1'3 Wett
C21,C33,C34 C19		Capacitor002 mfd, 600 V.	R29		Resistor - 330M ohms, 1/3 Watt
C29		Capacitor003 mfd. 400 V, Capacitor005 mfd, 400 V.	Ris		Baeistor - 560M ohms, 1/3 Watt
C20		Capacitor - ,008 mfd. 400 V.	R5		Resietor - 47 ohms, 1/3 Watt
C9		Capacitor004 mfd. Mics	R6 , R8		Resistor - 100 ohms, 1/3 Watt
			R12		Resistor - 270 ohms, 1/3 Wett
C8,C11		Capacitor0001 mfd. Mica	R31 R10		Resistor - 270 ohmus, 2 Wett Baeistor - 8200 ohmus, 1 Wett
C24,C25		Copacitor - totor mid. mica	RIU	R47262	Shaft - Drive
C18		Consideration and the state		R44897	Socket - Phono-TelFreq. Nod.
C35		Capacitor0005 mfd. Mica Capacitor00005 mfd. Mica		R16958	Socket - Bactifier
	R17915	Cell - Biss		R17983	Socket - Speaker
	R57203	Clip - Pilot Light		R17987	Socket - Tube
14	R47193	Coil - Ant. Loop Londing			WHEN ORDERING SPEAKER PARTS, ALWAYS GIVE THE
L5 L1	R47192 R47194	Coil - BC. & S.W. Oscillator			PART NUMBER APPEARING ON THE SPEAKER.
13	R57187	Coil - BC. Transistor Coil - Preselector Coupling			
ũ	R47495	Coil - S.W. Antenna		R57221	Speaker - 10" Dynamic
R26	R47235	Control - On-Off and Tone - 1 meg.		R45836	Cons and Voice Coil
R18	R47240	Control - Volume - 2 meg.		R45838	Field Coil
	R57273	Cord - Line (Phono)	T3	R45837	Output Transformer
	R18395	Cord - Lins (Power)		R18251 R45844	Spring - Drive Tension Switch - Tone and Phono-TelFreg. Mod.
	R42673 R57206	Cover - Push Button Tabs Disl - Stetion		R47191	Switch - Tone and Phono-TelFreq. Mod. Switch - Wave
	R57271	Escutcheon - Disl (Cat. #6104A)		R45995	Tab - Bace Boost
	R57231	Escutcheon - Disl (Cat. #6105A)		R45994	Teb - High Boost
	R49940	Knob - On-Off and Tone		R45996	Tab - Phono-TelFreq. Nod.
	R49939	Knob - Tuning		R42 879	Tabs - Call Letter
	R49941	Knob - Volume	T1 T2	R45305	Treneformer - #1 I.F.
	R49943	Knob - Wave Switch	12 14	R45306 R45953	Traneformer - #2 I.F. Tremsformer - Power - 60 cycle
	R14914 R59047	Lamp - Disl, Type #44 Leeflet - Instruction	VC	R43953 R47259	· · · ·
	AU 3 V 4 /	2001201 - 110 CI 00 C200	n	X4/239	Tuner - Push Button with Veriable Capacitor

Alignment information on page 118. COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Alignment for Sears, Roebuck & Co. Chassis 101.662-2B, and -2D PRELIMINARY:


utput Meter ConnectionAcross loud speaker voice coil	
enerator ground lead connectionReceiver chassis	ŧ.
ummy Antenna value to be in series with generator output	V.
onnection of generator output leadSee chart below	*
enerator Modulation	1
bsition of Volume Control	1
bsition of Tone ControlTreble	
bsition of pointer with tuner fully closedIast line below 540 calibration mark	r


WAVE BAND SWITCH POSITION	POSITION OF	GENERATOR FREQUENCY	DUMMY ANTENNA	GENERATOR CONNECTION	TRIMMER ADJUSTMENTS (IN ORDER SHOWN)	TR IMMER FUNCTION
BC	Closed	455 KC	.1 mfd.	7H7 Transl. grid	T2 , T 1	IF
BC	Open	1750 KC	.0002 mfd.	Ant. Terminal	Cõ	Oscillator
BC	1410	1410 KC	.0002 mfd.	Ant. Terminal	C5, C1	Ant. Transl.
BC	600 (rock)	600 KC	.0002 mfd.	Ant. Terminal	C7	Padder
SW	Open	18.3 MC	400 ohms	Ant. Terminal	C10	SW Oscillator
SW	15 (rock)	15 MC	400 ohms	Ant. Terminal	C2	Trens1.


The Antenna Alignment Procedure should be repeated step by step in the original order for greatest accuracy.

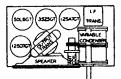
Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.

During alignment of the Band "BC" Padder and the Band "SW" Translator Trimmers, the Tuner should be rocked through resonance to assure alignment.

Sears, Roebuck & Co. Chassis 132.818

Schematic Location	Part No.	Description
Rı		Resistor, 4.7 Megohms, 1/4 watt
R2		Resistor, 1 Megohm, 1/4 watt
R3		Resistor, 150 ohms, 1/4 watt
R4		Resistor, 22,000 ohms, 1/4 watt
R5		Resistor, 330,000 ohms, 1/4 watt
R6		Resistor, 15,000 ohms, 1/4 watt
R 7	N18587	Resistor, 2 Megohms Vol. Control & Switch
R8		Resistor, 470,000 ohms, 1/4 watt
R9	N19177	Resistor, 47 ohms, 1 watt
RIO		Resistor, 2,200 ohms, 1 watt
R11		Resistor, 15 ohms, 1/4 watt
C1, C2	N17115	Condenser, Variable 2-gang
C3		Condenser, .05 mfd., 200 volt
C4		Condenser, .05 mfd., 400 volt
C6		Condenser, .00005 mid., 500 volt
C7		Condenser, .0001 mfd., 500 volt
C8		Condenser, .002 mfd., 500 volt
C9		Condenser, .01 mfd., 400 volt
C10)		Condenser, 40 mfd., 150 volt
C11 {	N19176	Condenser, 20 mfd., 150 volt
C12		Condenser, 20 mfd., 25 volt
T1 (N18255	Coil, antenna
T2	N18256	Coil, oscillator
T3	N1964.9	Transformer, i-f
Spk.	N17209	Speaker less output transformer
T4	N18258	Transformer output
	N19122	Dial scale emblem
	N18577	Cabinet, ivory

Tuning range 540-1600 Kc. Intermediate frequency, 455 Kc. Measurements made at 200 milliwatts output—approximately .8 volt on a rectifier type voltmeter connected across the voice coil. Dummy load for i-f .05 mfd. condenser


in series with generator lead. For r-f 50 mmfd. condenser in series with generator lead. Connect generator ground to receiver floating ground.

Balance at 1400 Kc. by rocking variable condenser while adjusting oscillator trimmer for maximum output. Check sensitivity at 600 Kc. If low, adjust antenna section plates for maximum output at 600 Kc.

Approximate inputs for 200 MW output; 1-f, 3000 uv. R-f at 1400 Kc., 360 uv; at 1000 Kc., 360 uv; at 600 Kc., 500 uv.

CAUTION: Remove the electric or power cord from the wall or floor outlet before replacing tubes, removing, adjusting or cleaning the chassis, or while connecting an zerial.

TUBE LOCATION

WITENNA WITH DO SKALL AC LINE VOLTAGE THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ THE VOLTAGE IS ZERO OF TOO LOW TO READ TO TO TOO LOW TO READ THE VOLTAGE IS ZERO OF T

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

SCHEMATIC DIAGRAM FOR SILVERTONE CHASSIS NUMBER 132.818

SILVERTONE POWR SHIFTR

Sears, Roebuck & Co. Chassis 139.150

IMPORTANT - READ CAREFULLY

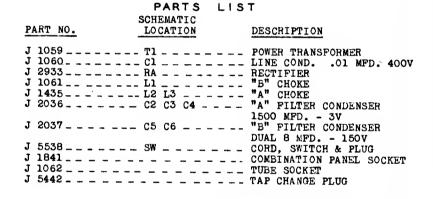
The "A" supply of this power unit is supplied through a dry disc rectifier. If the radio ceases to operate or drops off in performance, it may be due to a chemical change in this rectifier. This may cause the "B" voltage to drop low enough to affect the performance of the receiver.

To reactivate the rectifier it is only necessary to short (connect together) the "A" plua end "A" minus of plug or terminals of socket for a period of 4 minutea. The high temperature

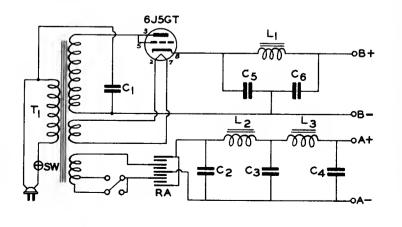
(Back

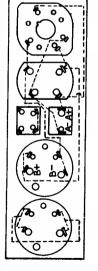
ASSEMBLY

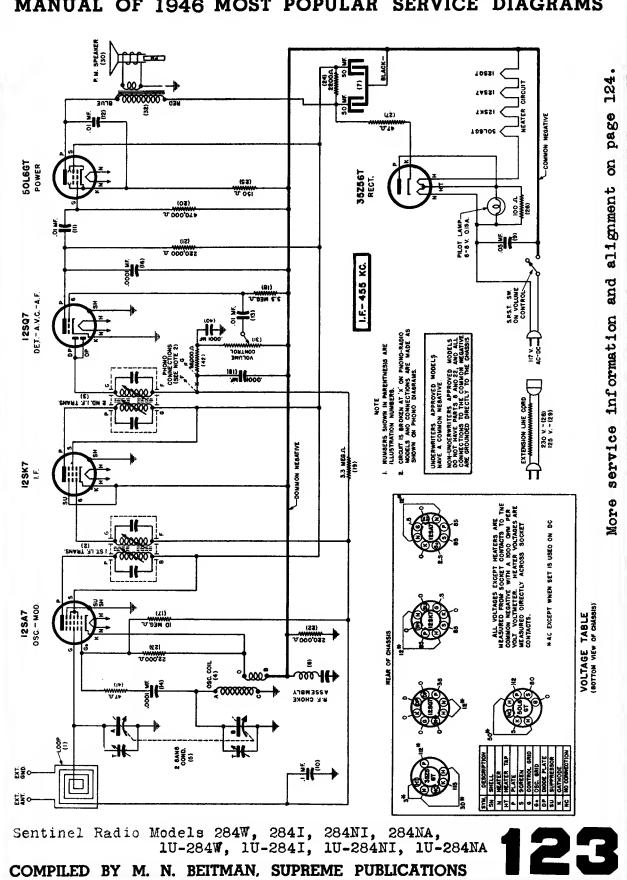
SOCKET

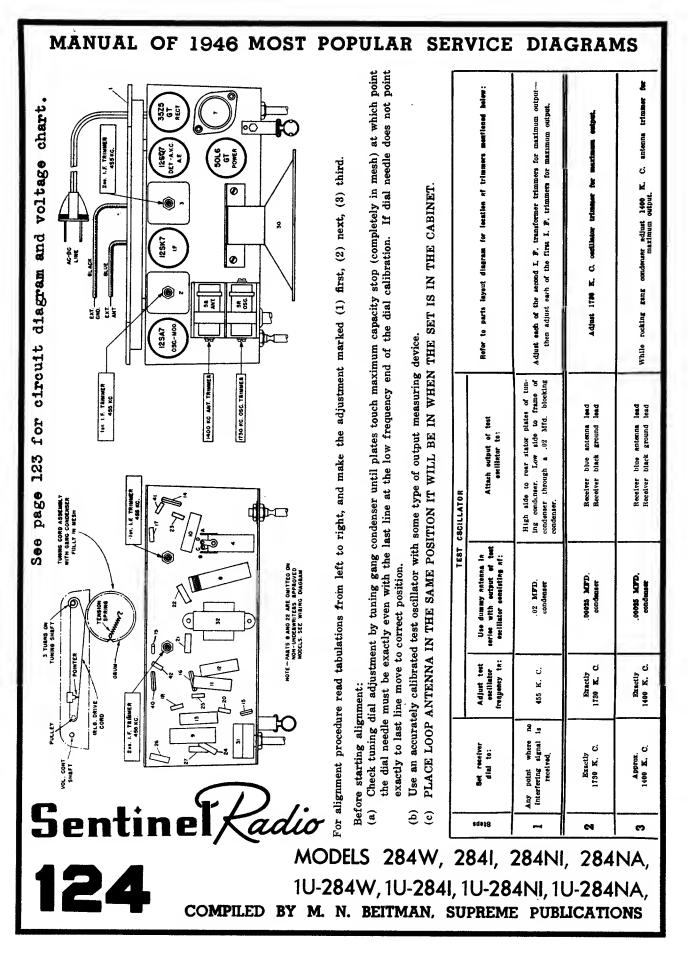

ОF

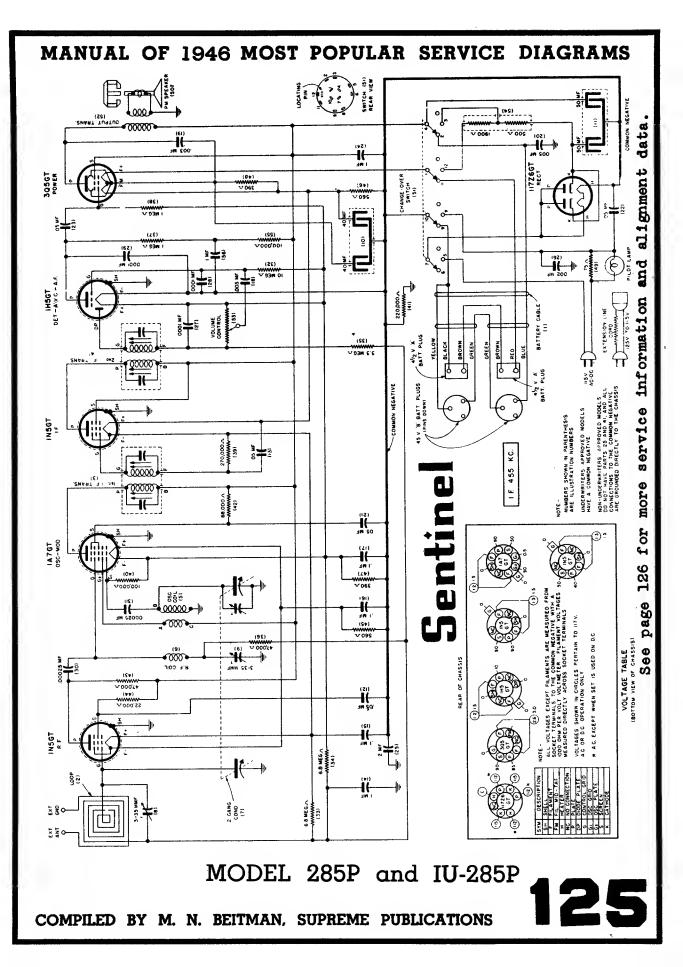
DIAGRAM

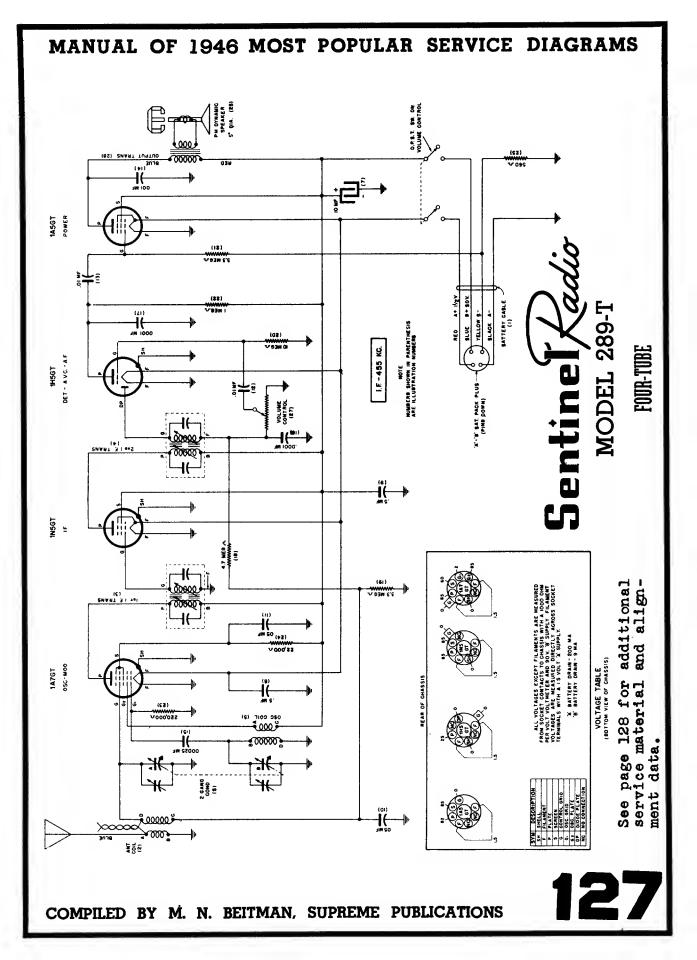

VIRING


developed in the rectifier during this period has the tendency to restore the disce to their normal rectifying capacity. The unit will not be harmed by this process.


This deactivated conditon is more likely to occur in the rectifier when the power unit has been out of service for some length of time (4 months or more).

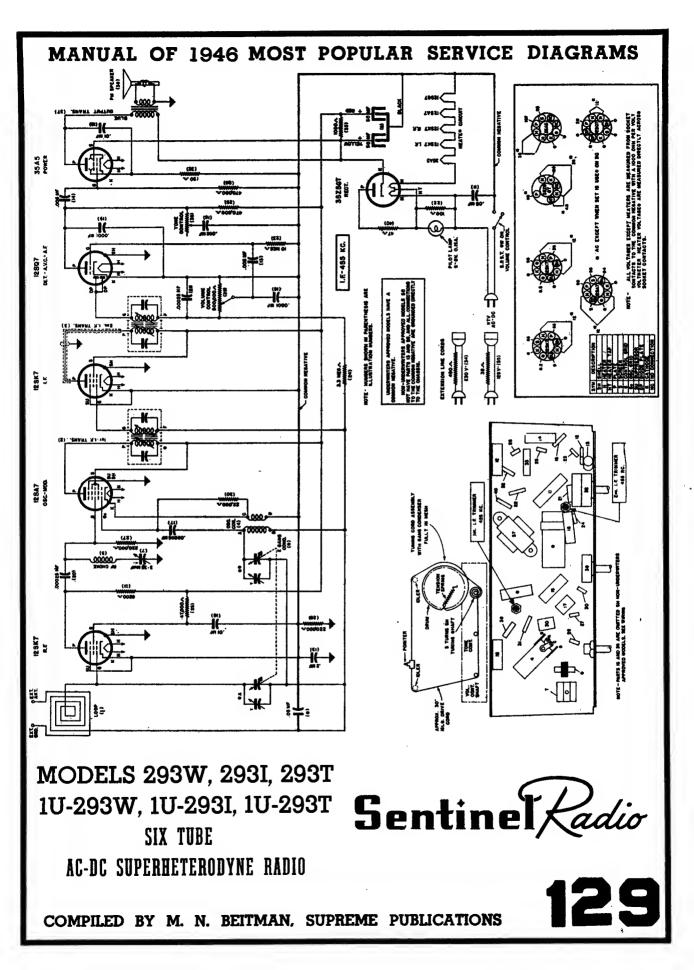


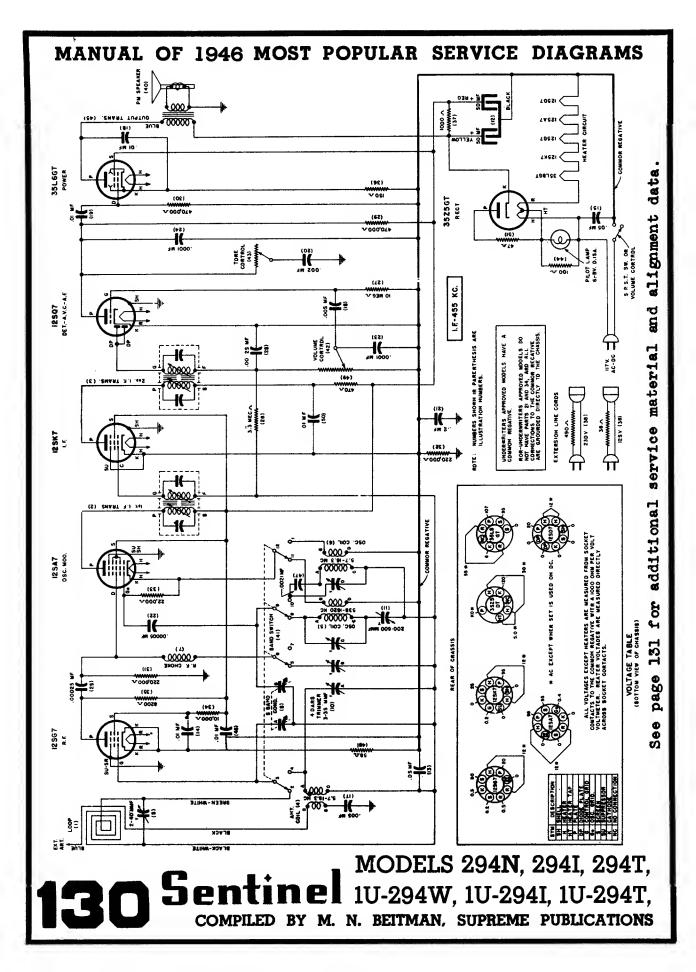

SEARS, ROEBUCK AND CO.



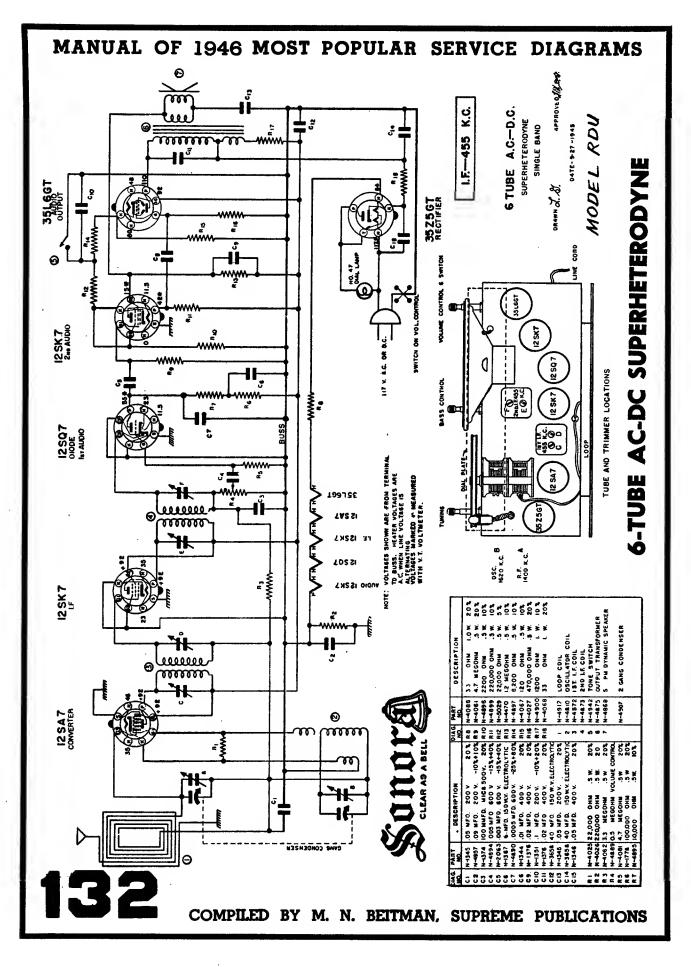
MANUAL	OF	1946 I	NOS	T P	OPULAR	SI	ERVI	CE D	IAG	RAM	S
				maximum capacity stop (completely in mesh) at which uency end of the dial calibration. If dial needle does not	Use an accurately calibrated test oscillator with some type of output measuring device. WHEN ADJUSTING 1650 KC OSCILLATOR TRIMMER AND 455 KC TRIMMER remove chassis from cabinet and disconnect the white-green and white-black loop connection wires from the 1400 KC loop antenna trimmer. THE 1400 KC LOOP ANTENNA TRIMMER is accessible through hole in cabinet back. It should be adjusted only after all other adjustments have been made and with the set mounted in the cabinet and the back. IN CLOSED position. When all megohin resistor across these wires and feed output of test oscillator across the 1 megohin resistor. THE 1400 KC LOOP ANTENNA TRIMMER is accessible through hole in cabinet back. It should be adjusted only after all other adjustments have been made and with the set mounted in the cabinet and the back IN CLOSED position. When aligning the 1400 KC trimmer connect test oscillator output to the "ANT" and "GND" clips that are attached to the inside of the cabinet back.		Refer to parts layout diagram for location of trimmers mantioned below:	Adjust each of the 2nd I.F. transformer trimmer adjustment screws for maximum output, then adjust each of the lat I.F. transformer trimmer distinct screws for maximum output.	Adjust R. F. coil trimmer for minimum 455 K. C. signal.	Adjust 1650 K. C. oscillator trimmer for maximum output.	Adjust 1400 K. C. antenna trimmer for maximum output.
LIVINING CORD ASSEMBLY WITH GANG CORD ASSEMBLY WITH GANG CORD ASSEMBLY WITH MESH 24. 15 TRIMUER 11. 15 TRIMUER 11. 15 TRIMUER				Check tuning dial adjustment by tuning gang condenser until plates touch maximum point the dial needle must be exactly even with the last line at the low frequency end point exactly to last line move to correct position.	test oscillator with some type of output measuring device. KC OSCILLATOR TRIMMER AND 455 KC TRIMMER remove loop connection wires from the 1400 KC loop antenna trimmer. across these wires and feed output of test oscillator across the SNNA TRIMMER is accessible through hole in cabinet back. I and with the set mounted in the cabinet and the back IN CLO rimmer connect test oscillator output to the "ANT" and "GND"	ILLATOR	Attach output of test oscillator to	High side to grid of lATGT tube, Low side to chassis (if non-Underwriter Approved) or Common Negative (if Un- derwriter Approved).	Set		See peragraph (D) alrore
PONTER 1 TURNE SAFT TURNE SAFT AFT OCTANNE SAFT TESSON AFT OCTANNE TESSON TOTAN			NOTE-MAITS 25 AND 41 ARE OWLITED ON NON-UNDERWITEAS APPROVED WORLS, SEE WIRNED ON ADA. APPROVED WORLS, SEE WIRNED ON ADA.	Check tuning dial adjustment by tuning gang con- point the dial needle must be exactly even with th point exactly to last line move to correct position.	ated test oscillator with some type 550 KC OSCILLATOR TRIMMER lack loop connection wires from the istor across these wires and feed of NTENNA TRIMMER is accessible and and with the set mounted in the KC trimmer connect test oscillator of	TEST OSCILLATOR	Usa dummy autenna in series with output of test oseiliator consisting of:	0.2 Mfd. Condenser	90 80 80 80 80 80 80 80 80 80 80 80 80 80	abore	See paragraph (D) abore
			PARTS 25 ANO 41 A APPROVED MODELS, 5 Ignment:	g dial adjus I needle mu to last lin	Tately caliby USTING 1 and white-l and white-l negohm res CC LOOP / have been 1 ig the 1400 ack.		Adjust tesi eseiliator frequency te:	Eractly 455 K. C.	Bractly 455 K. C.	Kra ctly 1650 K. C.	Арртох. 1400 К. С.
			5				Set receiver dial to:	Any point where no interfering sig- nal is received	Rotste gang condenser to marimum capacity	Rotate gang condenser to minimum cepacity	Approximately 1400 K. C.
Sei	nti	ina	Å.	(8)	(q) (p)		Steps	1	5	e	4
126		COMPILE	L D By	́М.		.25	285F for SUPR	circu		-285 agram ATIOI	•

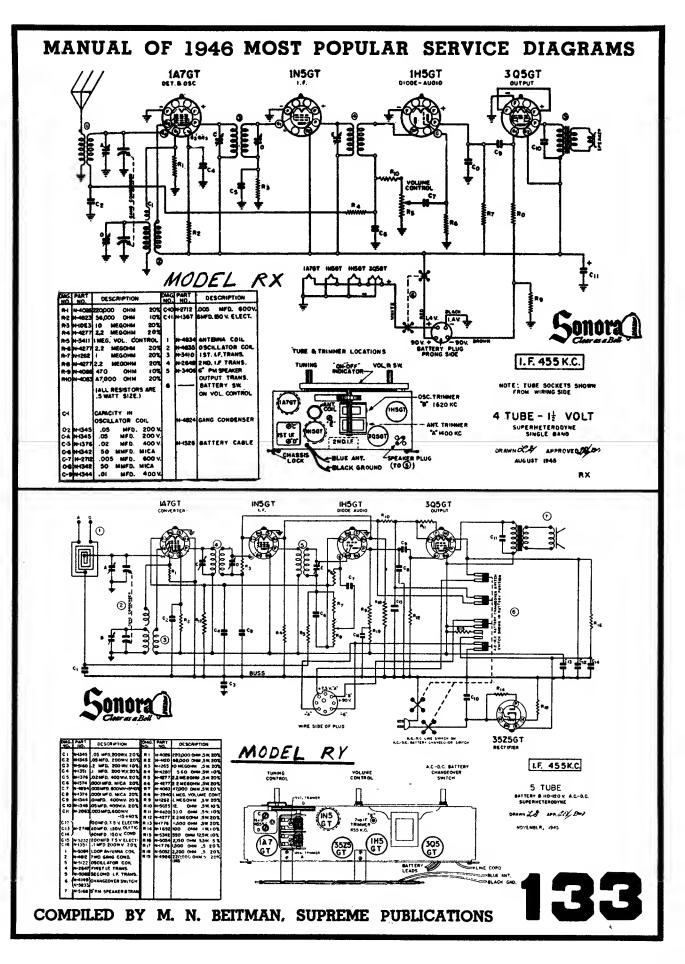
.

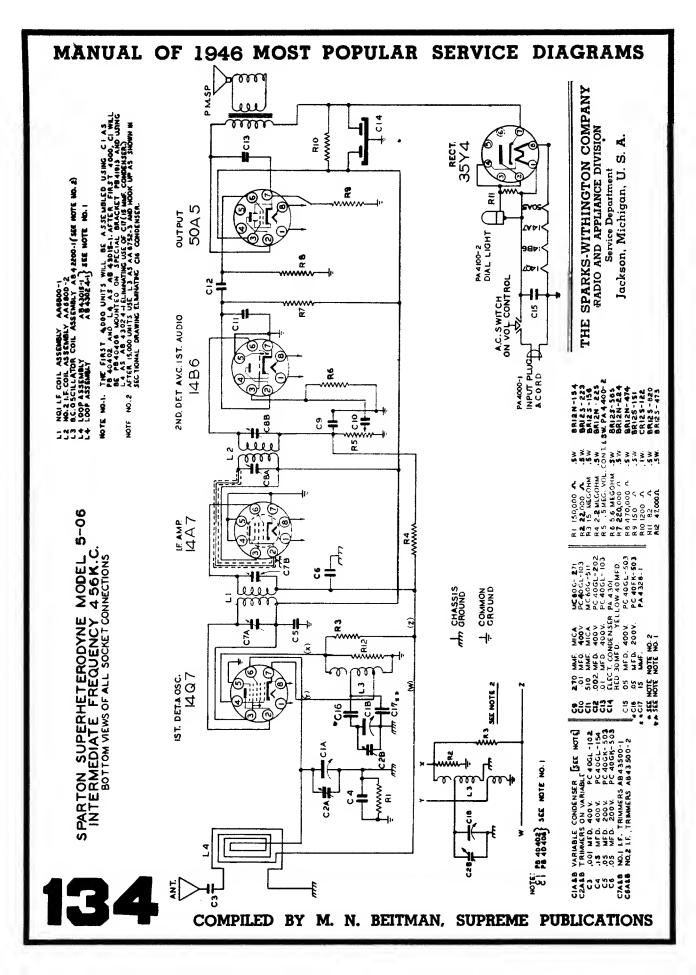

alignment procedure read tabulations from left to right. If more than one adjustment is required on any one band, make the adjustment marked Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration incorrect. For (1) first, (2) next, etc.

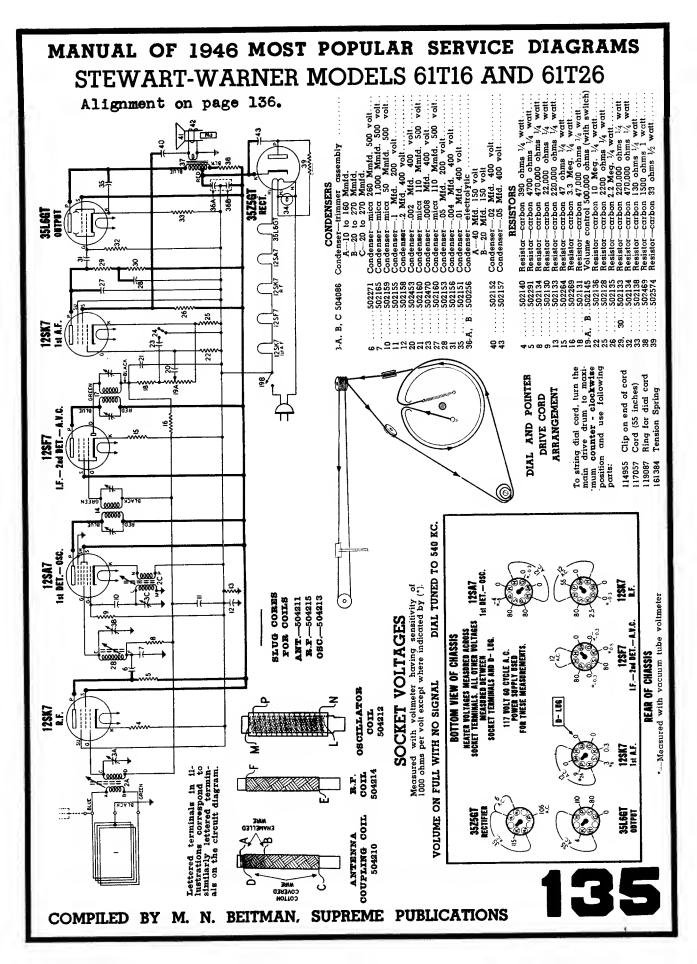

Before starting alignment:

- Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration. If dial needle does not point exactly to last line move to correct position. (B)
 - Use an accurately calibrated test oscillator with some type of output measuring device. 9

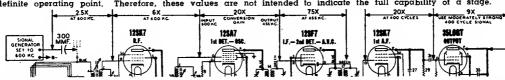

<u></u>	belew :	m output output.	ut.	am or for	A TANKER AND ASSEMBLY ON ASSEM
	Refer ta parta layout diagram fer location of trimmera mentioaed below:	Adjust each of the second I. F. transformer trimmers for maximum output- then adjust each of the first I. F. trimmers for maximum output.	Adjust 1739 K. C. oseillator trimmer for maximum output.	While rocking gang condenser adjust 1400 K. C. antenna trimmer marimum output.	
	Attach output of test oscillator to:	High side to grid terminal of 1A7GT tube DO NOT REMOVE CAP. Low side to receiver black ground load.	blue antenna lead black ground lead	blue antenna lead black ground lead	
LATOR	Attach outp	High side to g DO NC Low side to 1	Raceiver Raceiver	Ræceiver Ræceiver	
TEST 0SCILLATOR	Use dummy antenna in series with output of tast osciliator cenaisting of :	.02 MFD. condenser	.00025 MrPD. condenser	.00025 MFD. condenser	
	Adjuat test ascilituter frequency to:	455 K. C.	Exactly 1730 K. C.	Exactly 1400 K. C.	
<u> </u>	Set receiver diai to:	I.F. Any point where no interfer- ing signal is re- ceived	Exactly 1730 K. C.	Exactly 1400 K. C.	
	Steps	1	2	e	


MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS





MANUAL OF	19	46	M	DST	P	01	PU:	LAR SERVICE DIAGRAMS
given	Refer to parts layout diagram for lecation of trimmars montianed below:	Adjust each of the second I.F. transformer trimmers for maximum output, then adjust each of the first I.F. transformer trimmers for maximum output.	Adjust R.F. coll trimmer for misimum 455 K.C. nignal.	condenser addust 1400 K.C. loop trimm	While rocking gang condenser adjust 660 K.C. oscillator padder for marinum output.	Adjust 18.3 M.C. oscillator trimmer for maximum output.	While recking gang condenser adjust 15 M.C. ankenna trimmer for maximum	Arr-Politica and and and and and and and and and and
re to follow procedure carefully and in the order given—otherwise the receiver will be i procedure read tabulations from left to right. Make the adjustment marked (1) fir, e starting alignment: Check tuning dial adjustment by tuning gang condenser until plates touch maximum point the dial needle must be exactly even with the last line at the low frequency end point exactly to last line move to correct position. Use an accurately calibrated test oscillator with some type of output measuring device. Place loop antenna in the same position it will be in when set is in the cabinet.	ILLATOR Attach autput of test oscillator ta:	High slde to rear stator plates of tun- ing condenser. Low side to frame of condenser through .0] Mfd. condenser		ide to BLUE	Lead. Low side to chassis through a .01 mfd. condenser.			
e tion	TEST OSCILLATOR Use dummy aatoaaa la serios wich outbut of test assiliator coasistiag of			00025 Condenser		400 Ohm carbon resistor	400 Ohm carbon resistor	
arefully an ions from iment by tr ist be exact the move to a ted test e same posi	Adjust test osciliator frequency to:	Exactly 455 K.C.	Exactly 455 K.C. Exactly	1620 K.C. Approx. 1400 K.C.	Approx. 600 K.C.	Exactly 18.3 M.C.	Approx. 15 M.C.	
 Be sure to follow procedure carefully and in the orde alignment procedure read tabulations from left to right. Before starting alignment: (a) Check tuning dial adjustment by tuning gang content point the dial needle must be exactly even with point the dial needle must be exactly even with point exactly to last line move to correct position (b) Use an accurately calibrated test oscillator with (c) Place loop antenna in the same position it will be 	Set receiver dial to:	Any point where no interfering signal is received	Rotate gang condenser to Maximum Capacity Exactly	1620 K.C. Approx. 1400 K.C.	Approx. 600 K.C.	Exactly 18.3 M.C.	Approx. 15 M.C.	
Be sure to for iment proced Before starti (a) Check t point th point et (b) Use an (c) Place lo	Place band switch for aparation on:	I.F. alignment use any band position.		1620 to 538 K.C. Band			0.1 to 15.5 M.C. Band	See
a ligi	Steps	-		69		°		
Sentin	e							94 N , 294I, 294T, J-294I, 1U-294T, 1
COMPILED BY M	. N.	BE	ITMA	дэ N,	¥ V SUI	PRE	ME	E PUBLICATIONS



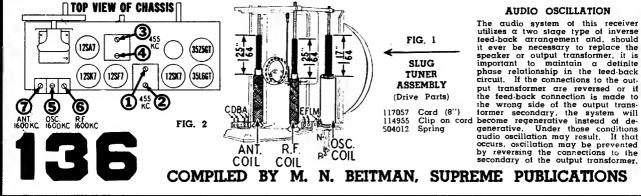
MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS STEWART-WARNER MODELS 61T16 AND 61T26

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 3 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability of a stage. establish a definite operating point.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

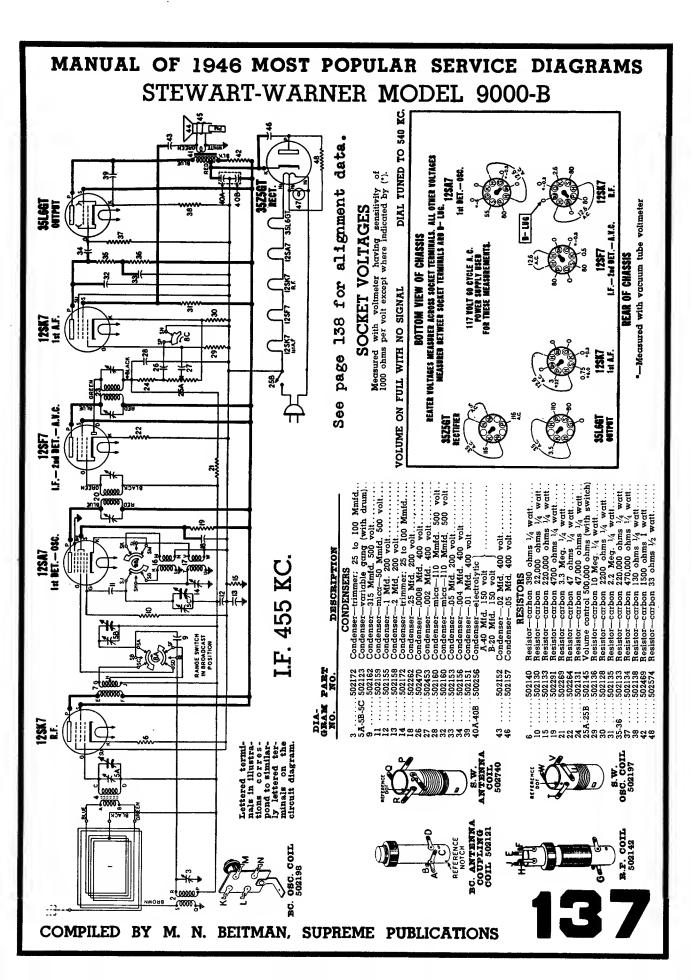
ALIGNMENT PROCEDURE

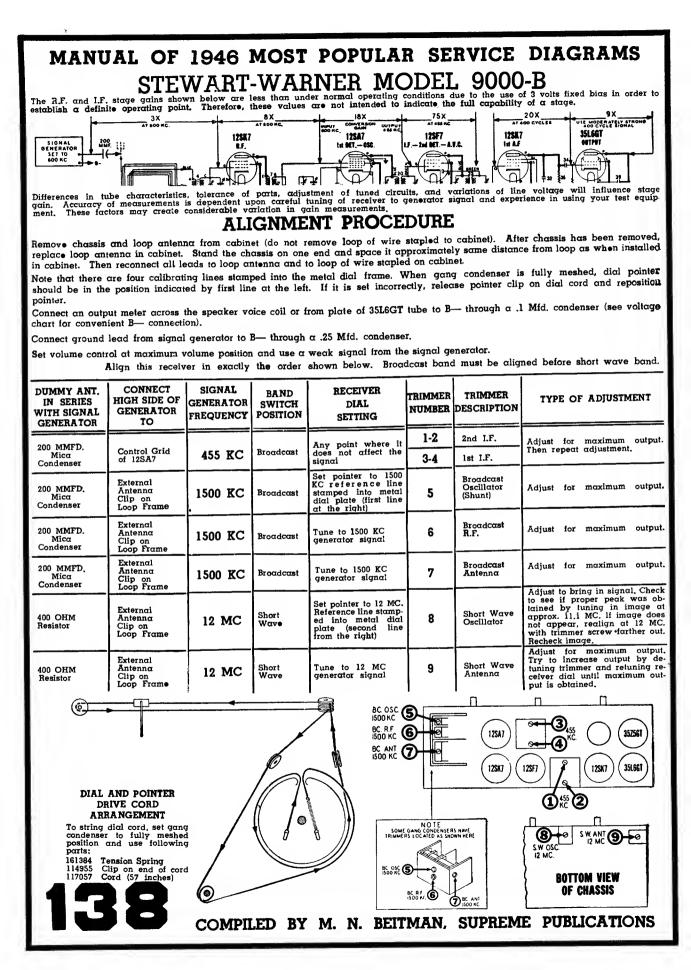
Remove chassis and loop from cabinet. Solder approximately 8" of insulated wire to any B- connection (see voltage chart on opposite side for convenient B- location). Then reinstall chassis and loop in cabinet. The B- lead should extend from under the chassis at the back.

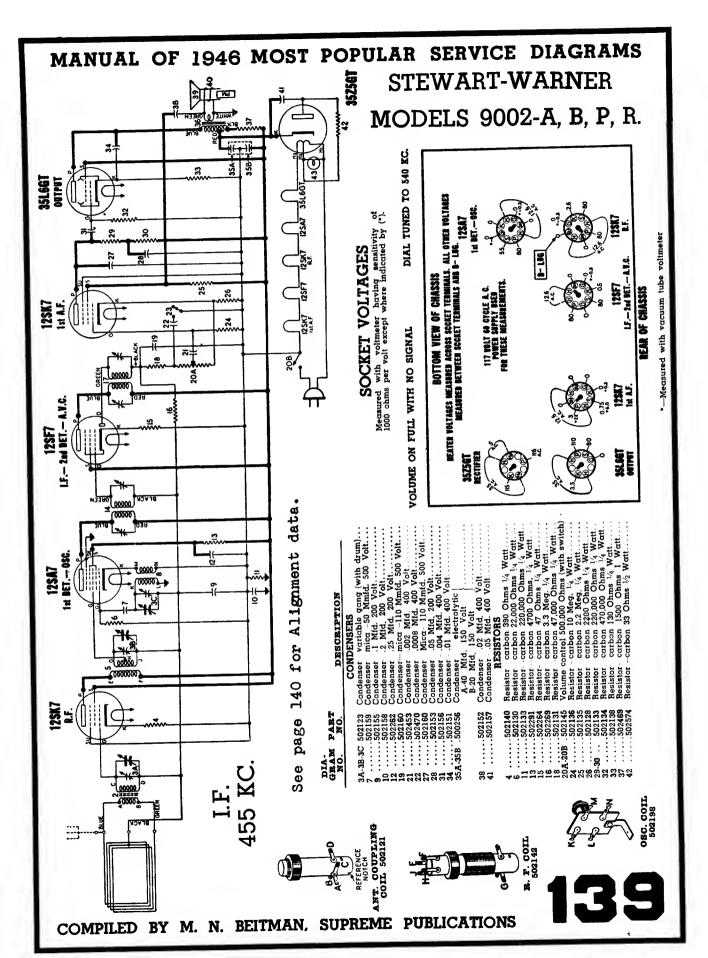

Connect ground lead of signal generator to B- lead.

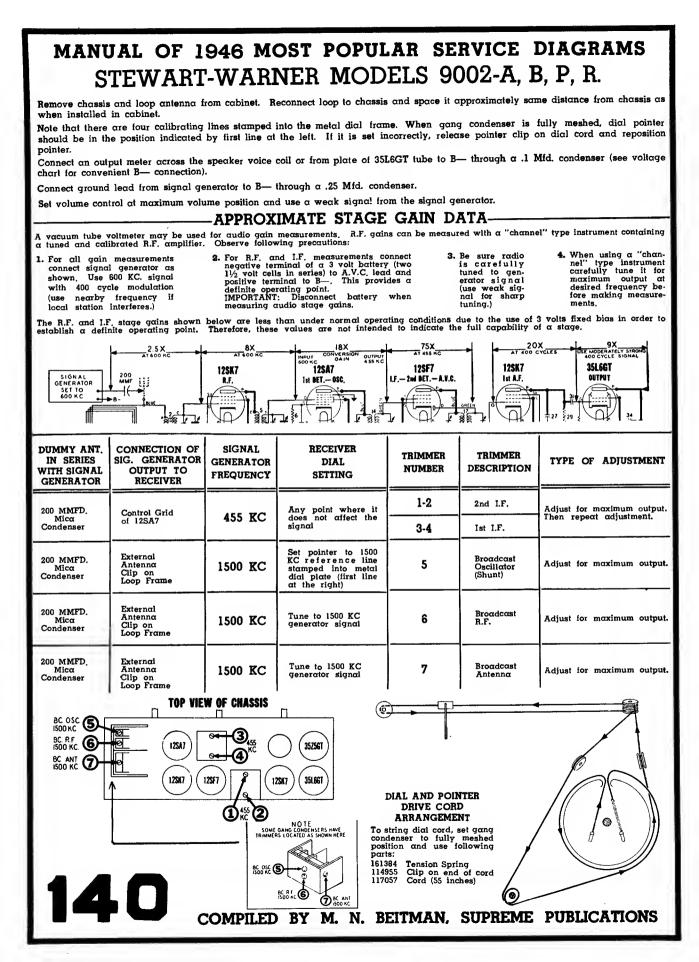
Connect output meter across the speaker voice coil (terminals at back ot speaker.)

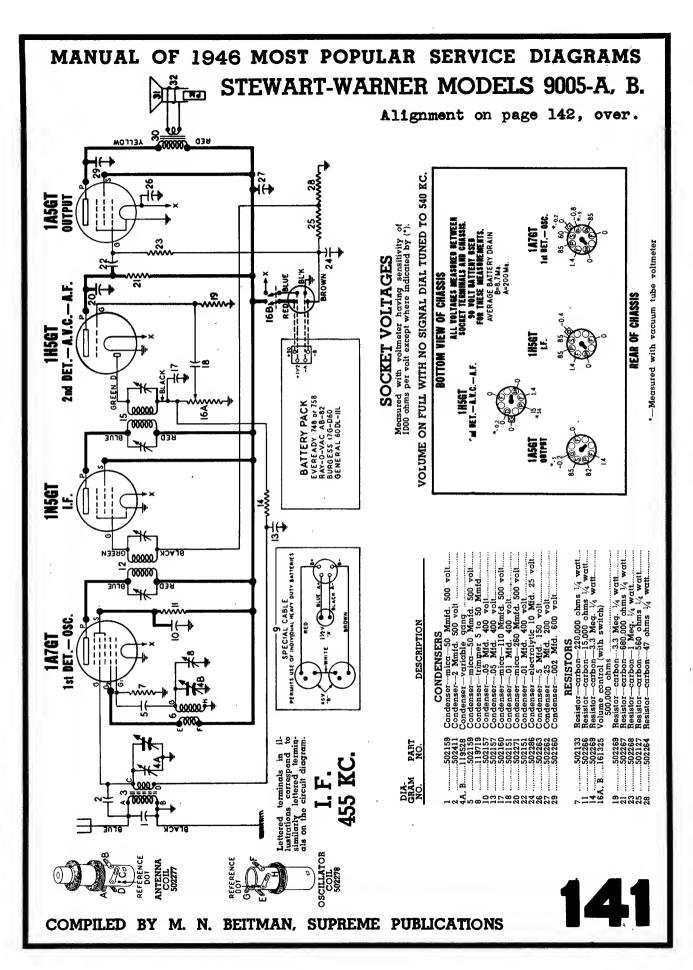
Turn the tuning control knob clockwise as far as it will go (tuner mechanism is now in maximum open position with tuning slugs almost completely withdrawn from coils). Dial pointer should then point to 1600 Kc mark on scale. If it is set incorrectly, release pointer clip on dial cord and reposition pointer.


Set tuner mechanism to maximum open position by turning the tuning control knob clockwise as far as it will go (Dial pointer at 1600 Kc). Then check whether the positions of the tuning slugs correspond to the positions shown in Fig. 1 below. If settings are incorrect, rotate the individual core and threaded stem until desired position is reached. Note that threaded stem is prevented from moving by a dab of speaker cement at top.

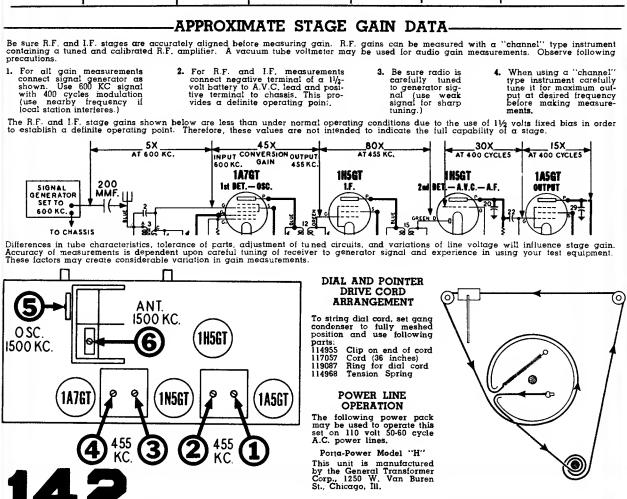

.1 MFD. Condenser	Ungrounded term- inal of trimmer No. 6 (see Fig. 2 below for location	455 KC	Any point where it does not affect the	1-2	2nd l.F.	Adjust for maximum output. Then repeat adjustment.
Condember	of trimmer.)		signal.	3-4	lst I.F.	
300 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1600 KC	1600 KC	5	Broadcast Oscillator (Shunt)	Adjust for maximum output.
300 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1600 KC	Tune to 1600 KC	6	Broadcast R.F.	Adjust for maximum output.
		1000 AC	generator signal	7	Broadcast Antenna	Adjust for maximum output.
300 MMFD	External Antenna	1400 770	Tune to 1400 KC	Ant. coil	tuning slug	Adjust position of slug for maximum output.
Mica Condenser	Clip on Loop Frame	1400 KC	generator signal	R.F. coil tuning slug		Adjust position of slug for maximum output.
300 MMFD. Mica	External Antenna	1600 KC	Tune to 1600 KC	6	Broadcast R.F.	Recheck adjustment for maximum output.
Condenser	Clip on Loop Frame	1000 2C	generator signal	7	Broadcast Antenna	Recheck adjustment for maximum output.

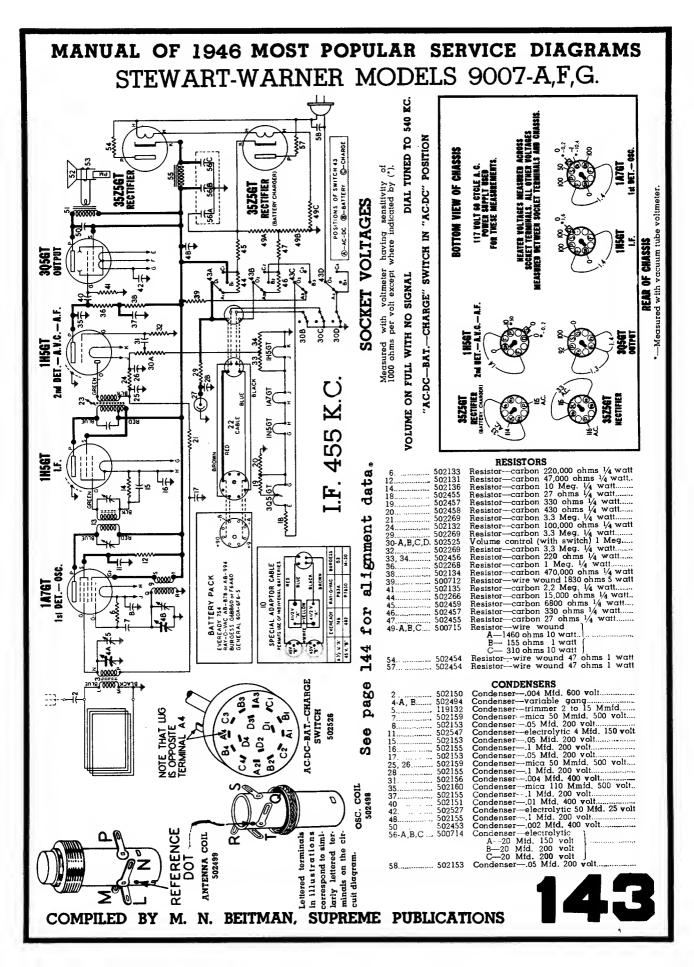



AUDIO OSCILLATION


utilizes a two slage type of inverse feed-back arrangement and, should is ever be necessary to replace the speaker or output transformer, it is important to maintain a definite phase relationship in the feed back circuit. If the connections to the output transformer are reversed or if the feed-back connection is made to wrong side of the output transformer secondary, the system will become regenerative instead of de-generative. Under those conditions audio oscillation may result. If that occurs, oscillation may be prevented by reversing the connections to the secondary of the output transformer.

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS STEWART-WARNER MODELS 9005-A, B.


When gang condenser is fully meshed, dial pointer should be in the position indicated by the 54 mark on the dial. If it is set incorrectly, release the pointer clip on the dial cord and reposition pointer.


Connect an output meter across speaker voice coil or from the plate of the 1A5GT tube to chassis through a 0.1 Mid. condenser.

Connect the ground lead of the signal generator to the receiver ground lead (black) or to the chassis.

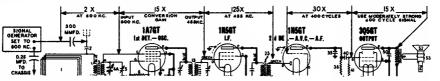
Set volume control to maximum volume position and use a weak signal from the signal generator.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF SIG. GENERATOR TO	SIGNAL GENERATOR FREQUENCY	RECEIVER DIAL SETTING	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT	
.1 MFD.	Grid can on	455 70	Any point where it does not affect the	1-2	2nd I.F.	Adjust for maximum output.	
Condenser	Grid cap on 1A7GT tube	455 KC	does not affect the signal	3-4	lst I.F.	Then repeat adjustment.	
200 MMFD. Mica Condenser	External antenna lead (blue)	1500 KC	1500 KC	5	Broadcast Oscillator	Adjust for maximum output.	
200 MMFD. Mica Condenser	External antenna lead (blue)	1500 KC	Tune to 1500 KC generator signal	6	Broadcast Antenna	Adjust for maximum output.	

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS STEWART-WARNER MODELS 9007-A,F,G. ALIGNMENT PROCEDURE

Slide chassis partially out of cabinet by removing staples at each side of wood shelf and pulling entire shelf back about 2 inches. Do not disturb connections to loop antenna.

Connect an output meter across the voice coil of the speaker or between the plate of the 3Q5GT output tube and chassis through a .1 mfd. condenser.


Connect the ground lead of the signal generator to chassis through a .25 mfd. condenser.

Set the volume control in the maximum position and use a weak signal from the generator.

Set "AC-DC-BAT.-CHARGE" Switch in "AC-DC" position.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF SIG. GENERATOR TO	SIGNAL GENERATOR FRE- QUENCY	RECEIVER DIAL SETTING	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
300 MMFD. Condenser	Grid Cap of 1A7GT Tube	455 KC.	Any Point Where It Does Not Affect Signal	1	2nd I.F.	Loosen lock nut. Adjust screw for maximum output.
				2-3	lst I.F.	Adjust for maximum output. Re- check 1, 2 and 3 for maximum output and tighten lock nut on 1.
300 MMFD. Condenser	Center Terminal on Antenna Terminal Strip at bottom of cabinet.	1500 KC.	1500 KC. (Slide set into cabinet and re- place pointer to set dial.)	4	Broadcast Oscillator (Shunt)	Adjust trimmer for maximum output.
300 MMFD. Condenser	Center Terminal on Antenna Terminal Strip at bottom of cabinet.	1500 KC.	Tune to 1500 KC. Generator Signal	5	Broadcast Antenna	Adjust for maximum output. Slide chassis all the way into cabinet when making this ad- justment.

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 11/2 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability of a stage.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

n

DIAL DRIVE CORD ARRANGEMENT

To string dial cord, set gang condenser to fully meshed position

The flashing neon lamp on the dial face indicates condition of batteries. This lamp is included in an oscillating (R-C) circuit which is designed to oscillate at approximately 3 pulses per second when batteries are in a fully charged condition. As the battery voltage decreases with use, number of pulses per second decreases.

INDICATOR LAMP

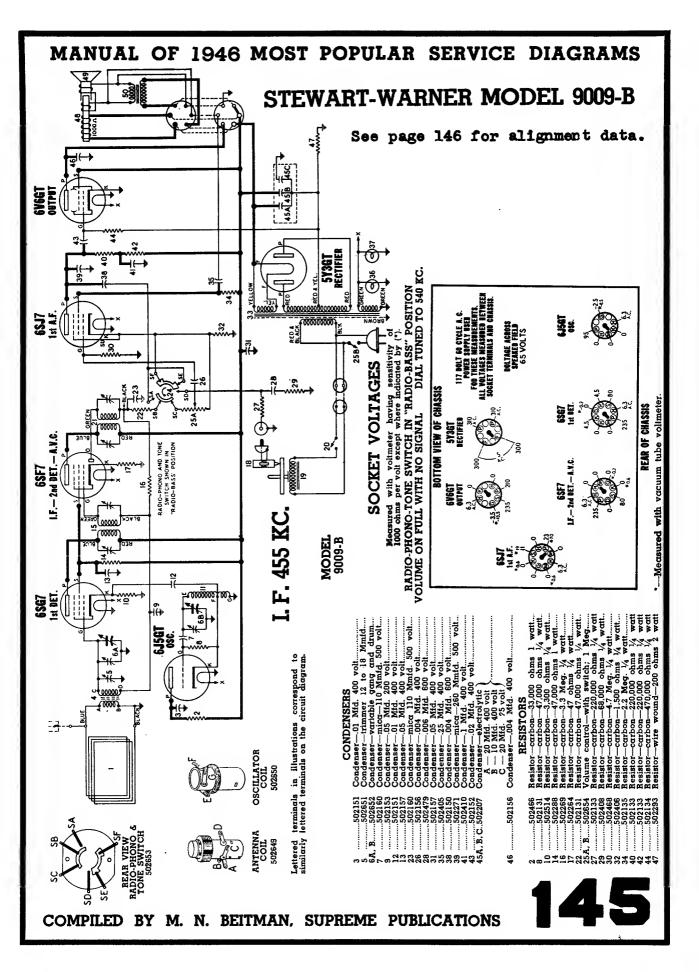
TOP VIEW OF CHASSIS

1H561

OSC

1500 KC

(1876)


ANT. 1500 KC.

This lamp will only show the true condition of the batteries when the Selector Switch Is in the "Battery" position. Lamp flashes more rapidly during charging or "AC-DC" operation. When battery voltage is low (approximately 72 volts) the lamp flashes more slowly (about once per second). The set should not be operated from battery power after this point is reached and batteries should be recharged immediately. Charge for at least twice the time they were used and as soon as possible after they are run down. As batteries age it is necessary to charge for a longer period. For longest battery life, charge immediately after using.

- IMPORTANT: I. Completely dead batteries cannot be recharged.
 - When set is connected to a DC line, check for correct polarity by operating it before attempting to charge the batteries.
 - 3. Batteries will be discharged if ON-OFF switch is left ON when power cord is not connected to wall outlet.

CHARGING CIRCUIT

The battery charging circuit consists of a 3525GT rectifier and a suitable resistor voltage dividing network. This circuit provides a very low charging current when the receiver is operated on AC-DC and is just enough to maintain the batteries but will not charge them. A separate charging position is provided for the regular charging operation. A charging rate of approximately $\frac{1}{3}$ the discharge rate is used to give best results.

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS STEWART-WARNER MODEL 9009-B

Remove chassis and loop antenna (cabinet back) from cabinet. Reconnect loop to chassis and space it approximately same distance from chassis as when installed in cabinet.

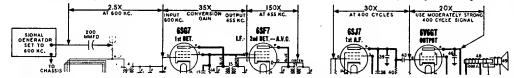
With the gang condenser fully meshed, the dial pointer should be in the position indicated by the last mark below 55 on the dial. If it is set incorrectly, release the pointer clip on the dial cord and reposition pointer.

Connect an output meter across the speaker voice coil or from the plate of the 6V6GT tube to chassis through a .1 Mfd. condenser.

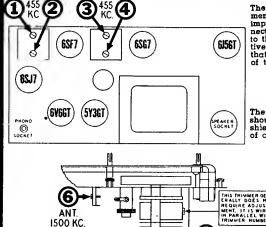
Connect the ground lead of signal generator to the receiver chassis.

Set volume control at maximum volume position and nse a weak signal from the signal generator.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF SIG. GENERATOR TO	SIGNAL GENERATOR FREQUENCY	RECEIVER DIAL SETTING	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
.1 MFD.	Trimmer on top	455 KC	Any point where it	1-2	2nd I.F.	Adjust for maximum output.
Condenser	section of gang.	435 KC	does not affect the signal	3-4	lst'I.F.	Then repeat adjustment.
200 MMFD. Mica Condenser	External Antenna Clip on Loop Antenna	1500 KC	1500 KC	5	Broadcast Oscillator	Adjust for maximum output.
200 MMFD. Mica Condenser	External Antenna Clip on Loop Antenna	1500 KC	Tune to 1500 KC generator signal	6	Broadcast Antenna	Adjust for maximum output.

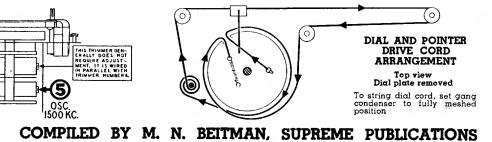

APPROXIMATE STAGE GAIN DATA

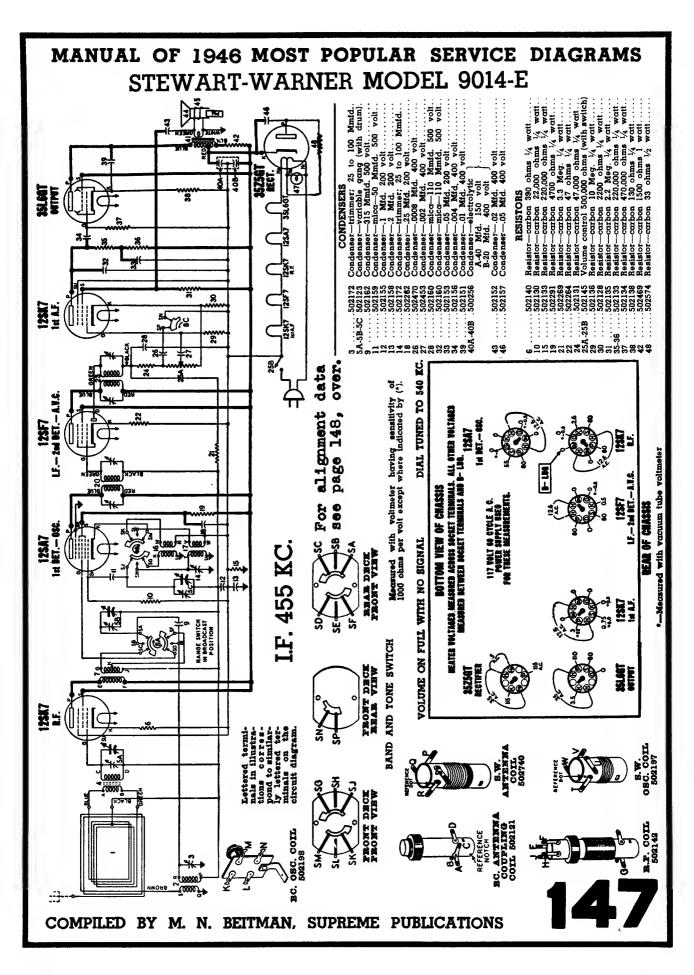
Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument containing a tuned and calibrated R.F. amplifier. A vacuum tube voltmeter may be used for audio gain measurements. Observe following precautions:


 For all gain measurements connect signal generator as shown. Use 600 K.C. signal with 400 cycle modulation (use nearby frequency if local station interferes.)

- 2. For R.F. and I.F. measurements connect negative terminal of a 3 volt battery (two 11/2 volt cells in series) to A.V.C. lead and positive terminal to chassis. This provides a definite operating point. IMPORTANT: Disconnect battery when measuring audio stage gains.
- Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
- When using a "channel" type instrument carefully tune it for maximum output at desired frequency before making measurements.

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 3 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability of a stage.


Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.



The audio system of this receiver utilizes a two stage type of inverse feed-back arrangement and should it ever be necessary to replace the speaker or output transformer it is important to maintain a definite phase relationship in the feed-back circuit. If the connections to the output transformer are reversed or if the feed-back connection is made to the wrong side of the output transformer secondary, the system will become regenerative instead of degenerative. Under those conditions audio oscillation may result. If that occurs, oscillation may be prevented by reversing the connections to the primary of the output transformer.

IMPORTANCE OF MAINTAINING FIXED POSITIONS FOR LEADS AT TOP OF CHASSIS

The shielded leads which are routed to the "Radio-Phono" switch and volume control should be tied to the upright bracket which supports the dial assembly. Grounded shields on these leads must not be allowed to contact electrolytic condenser case. If case of condenser is grounded it will short out bias voltage for 6VGCT tube.

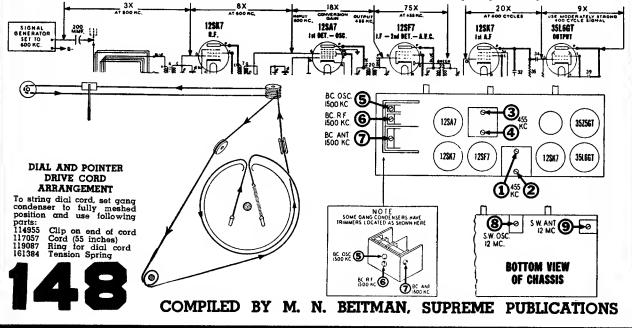
MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS

Stewart-Warner Alignment Procedure for Model 9014-E

Note that there are four calibrating lines stamped into the metal dial frame. When gang condenser is fully meshed, dial pointer should be in the position indicated by first line at the left. If it is set incorrectly, release pointer clip on dial cord and reposition pointer.

Connect an output meter across the speaker voice coil or from plate of 35L6GT tube to B— through a .1 Mfd. condenser (see voltage chart for convenient B— connection).

Connect ground lead from signal generator to B- through a .25 Mfd. condenser.


DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF GENERATOR TO	SIGNAL GENERATOR FREQUENCY	BAND SWITCH POSITION	RECEIVER DIAL SETTING	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
200 MMFD. Mica	Control Grid of 12SA7	455 KC	Broadcast	Any point where it does not affect the	1-2	2nd I.F.	Adjust for maximum output. Then repeat adjustment.
Condenser				signal	3-4	lst I.F.	······································
200 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1500 KC	Broadcast	Set pointer to 1500 KC reference line stamped into metal dial plate (first line at the right)	5	Broadcast Oscillator (Shunt)	Adjust for maximum output.
200 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1500 KC	Broadcast	Tune to 1500 KC generator signal	6	Broadcast R.F.	Adjust for maximum output.
200 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1500 KC	Broadcast	Tune to 1500 KC generator signal	7	Broadcast Antenna	Adjust for maximum output.
400 OHM Resistor	External Antenna Clip on Loop Frame	12 MC	Short Wave	Set pointer to 12 MC. Reference line stamp- ed into metal dial plate (second line from the right)	8	Short Wave Oscillator	Adjust to bring in signal. Check to see if proper peak was ob- tained by tuning in image at approx. 11.1 MC. If image does not appear, realign at 12 MC. with trimmer screw farther out. Recheck image.
400 OHM Resistor	External Antenna Clip on Loop Frame	12 MC	Short Wave	Tune to 12 MC generator signal	9	Short Wαve Antennα	Adjust for maximum output. Try to increase output by de- tuning trimmer and retuning re- ceiver dial until maximum out- put is obtained.

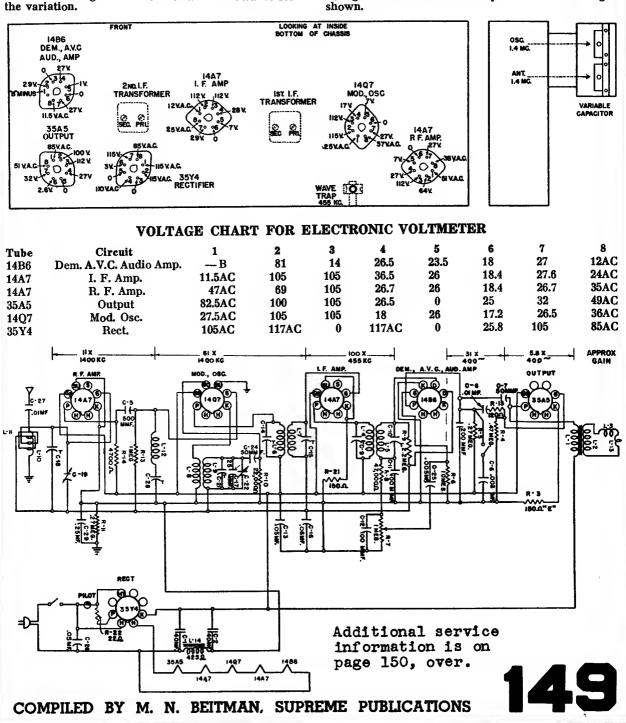
APPROXIMATE STAGE GAIN DATA

A vacuum tube voltmeter may be used for audio gain measurements. R.F. gains can be measured with a "channel" type instrument containing a tuned and calibrated R.F. amplifier. Observe following precautions:

 For all gain measurements connect signal generator as shown. Use 600 KC. signal with 400 cycle modulation (use nearby frequency if local station interferes.) 2. For R.F. and I.F. measurements connect negative terminal of a 3 volt battery (two 1½ volt cells in series) to A.V.C. lead and positive terminal to B—. This provides a definite operating point. IMPORTANT: Disconnect battery when measuring audio stage gains. 3. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.) When using a "channel", type instrument carefully tune it for maximum output at desired frequency before making measurements.

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 3 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability of a stage.

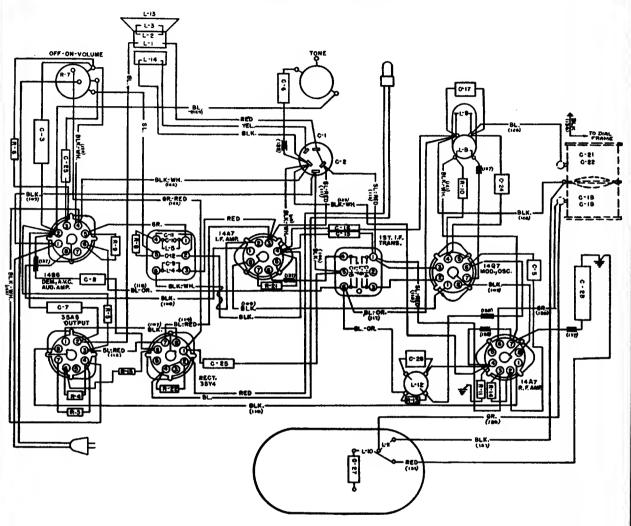
MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS STROMBERG-CARLSON NO. 1100 AC-DC RADIO RECEIVERS


NORMAL VOLTAGE READINGS

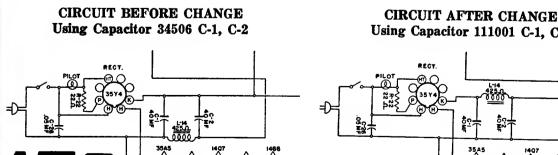
Use a good voltmeter having a resistance of at least 1000 ohms per volt. See chart below if electronic voltmeter is used.

Take all readings with chassis operating and tuned to approximately 1000 Kc.—no input signal. Use a line voltage of 117 volts or make allowance for Read from indicated socket terminals to B minus. A convenient point is terminal No. 1 of the 14B6 Dem. A.V.C. Socket.

See Location Chart for position of terminals.

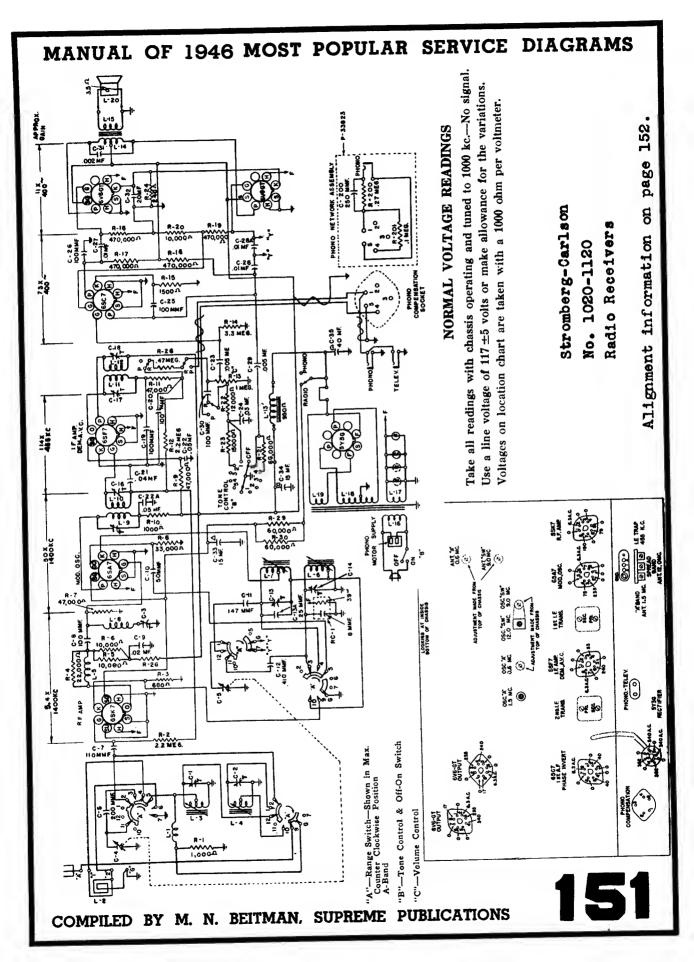

A. C. Voltages are indicated as A. C.; when the receiver is operated from a D. C. power supply, D. C. voltages will be obtained in place of A. C. voltages shown.

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS


STROMBERG-CARLSON NO. 1100 AC-DC RADIO RECEIVERS

(Continued from page 149).

1100 RECEIVER—CHANGE IN RECTIFIER CIRCUIT


Field Coil of Speaker has been removed from negative side of Rectifier Circuit to positive side.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Using Capacitor 111001 C-1, C-2

1407

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS STROMBERG-CARLSON NO. 1020-1120 RADIO RECEIVERS

Voltage Bating	
Voltage Rating Type of Circuit	A C 105 to 120 Wolte
Type of Circuit Tuning Ranges Number and Type of Tubes7	Supermeterouyne with Push Button Tuning
	A-540 to 1600 Kc., C8.8 to 12 Mc
Number and Type of Tubes7	
1—6SK7 R. F. Amplifier	1. BSC7 Audio Amelian and Tour
1-6SA7 Modulator and Oscillator	1-6SC7 Audio Amplifier and Inverter
	2-6V6GT Output
1-6SF7 I. F. Amplifier, Demodulator and A. V. C.	1—5Y3G Rectifier
Input Power Rating	- ord needher
Intermediate Frances	96-115 Watts
interineurate Frequency	455 Kiloovolos
Intermediate Frequency Speaker Voice Coil Impedance at 400 Cycles Speaker Field Coil Resistance	Annual 400 Milocycles
Speaker Field Coil Besistance	Approximately 3.5 Ohm
Speaker Field Coil Resistance	950 Ohms
Power Output	10 Watts 10% Distortion 19 Watta Marine

ALIGNING INFORMATION

Never re-align unless absolutely necessary.

Use a good modulated signal generator (test oscillator with variable output voltage and a sensitive output meter across the voice coil of the speaker). Always align using the smallest possible input from the signal generator. A strong signal makes adjustments inaccurate.

Always have the volume control "full on".

ALIGNING PROCEDURE (follow this order exactly).

- I. Intermediate Frequency Adjustments.
 - 1. Set range switch to Standard Broadcast position (loop).
 - 2. Turn the tuning control to extreme low fre-
 - quency end of dial. 3. Connect the ground terminal of the signal generator to the ground terminal of the chassis.
 - 4. Introduce a modulated signal of 455 kilo-cycles to the grid of the 6SA7 Modulator and Oscillator tube (terminal No. 8) using a 0.1 microfarad capacitor in series with the output lead of the signal generator.
 - 5. Adjust the I.F. aligners for maximum output in the following order:
 - Secondary of second I. F. Transformer. Primary of second I. F. Transformer. Secondary of first I. F. Transformer. Α.
 - B.

 - Primary of first I. F. Transformer. D.

II. Dial Pointer Adjustment.

With the plates of the gang tuning capacitor fully engaged, check to be sure that the dial pointer is in a vertical position directly on the calibration marks located at the low frequency end of the dial scale. Adjust the dial pointer if necessary.

III. Radio Frequency Adjustments. Short Wave Range

52

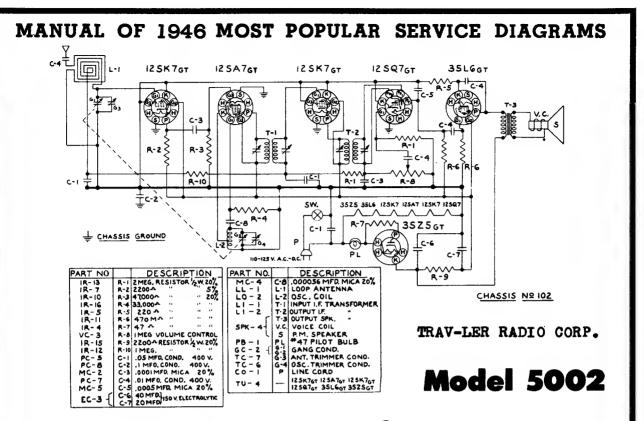
- 1. Remove the output lead of the signal generator and the 0.1 microfarad capacitor from the grid of the 6SA7 tube.
- 2. Disconnect the output lead from the signal

generator and replace with a few turns of wire connected to the signal generator output terminals.

- 3. Place the signal generator two or three feet from the receiver's loop.
- 4. Set the range switch to the short-wave range
- position. 5. Set the signal generator frequency and the receiver tuning dial to 9 megacycles.
- 6. Adjust the 9 megacycle oscillator and loop aligners (iron cores) for maximum signal.
- 7. Set the signal generator frequency and the receiver tuning dial to 12 megacycles. 8. Adjust the 12 megacycle oscillator aligning
- capacitors for maximum signal. Then rock the tuning gang capacitor slowly through res-onance and adjust the 12 megacycle antennae aligning capacitor for maximum signal. 9. Repeat operations 5 and 6.
- 10. Repeat operations 7 and 8.

Standard Broadcast Range

- 1. Set the range switch to the "Loop" position.
- 2. Set the signal generator frequency and the receiver tuning dial to 600 kilocycles.
- Adjust the 600 K.C. oscillator and antennae aligner (iron cores) for maximum signal.
- 4. Set the signal generator frequency and the receiver tuning dial to 1400 kilocycles.
- 5. Adjust the 1400 K. C. oscillator and antennae aligning capacitors for maximum signal.
- 6. Repeat operations 2 and 3.
- 7. Repeat operations 4 and 5.

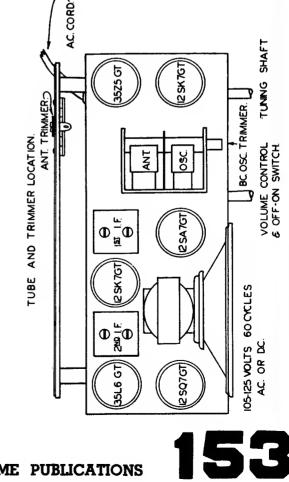

IV. Wave Trap Adjustment.

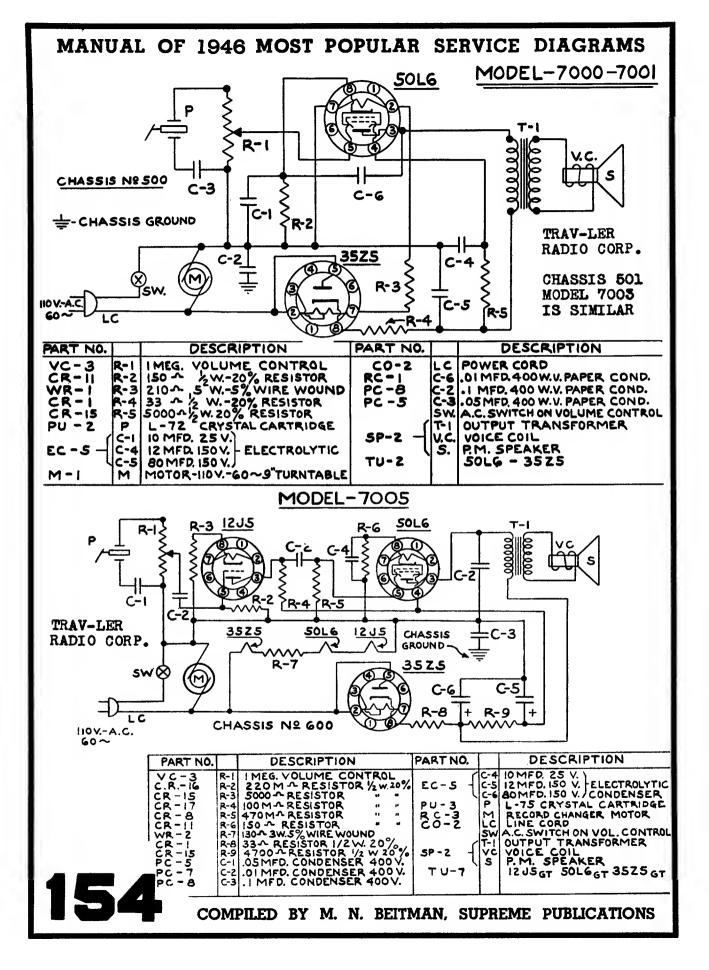
- 1. Tune the receiver to 1000 kc.
- Set the signal generator frequency to 455 kc. 2. Increase signal generator output until audible in speaker.
- 3. Adjust the wave trap aligning capacitor for minimum signal.

VOLTAGE TABLE FOR ELECTRONIC VOLTMETER

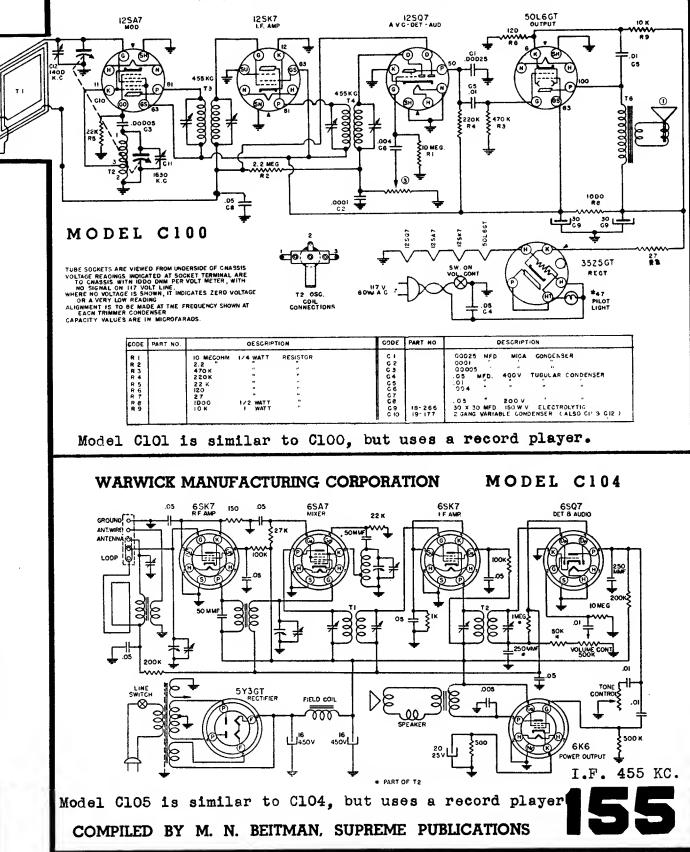
Tube		1	2	3	4	5	6	7	8
6V6	Output	0	6.3AC	245	251	0	Ō	0	16
6V6	Output	Ō	0	245	251	Ō	Ō	6.3AC	16.
6SC7	1st A.F. Conv.	0	93	0	0	93	1.1	0	6.3AC
6SA7	Mod. Osc.	0	0	246	80	7.5	0	6.3AC	0
5 Y 3	Rect.	0	360	0	340AC	0	340AC	0	360
6SF7	I.F. Det. A.V.C.	0	.6	0	92	0	250	0	6.3AC
<u>6SK7</u>	R.F. Amp.	0	6.3AC	0	.6	0	80	0	196

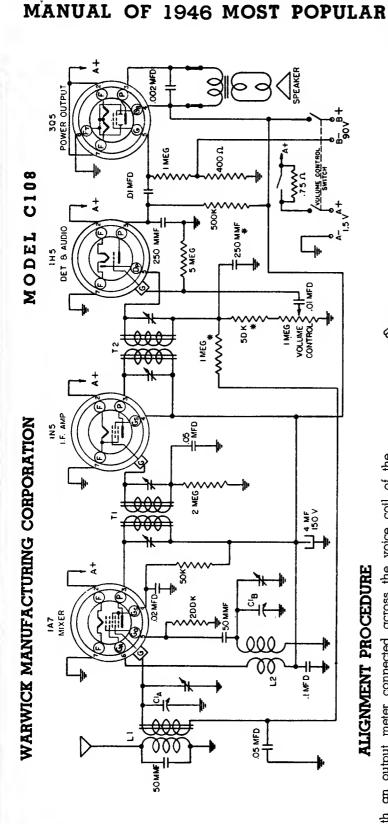
COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS



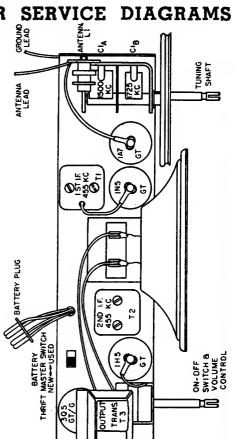

The receiver volume control should be turned to moximum during the I.F. and all subsequent alignments to keep the AVC from working and giving false readings. Keep the generator output as low as possible to prevent overloading.

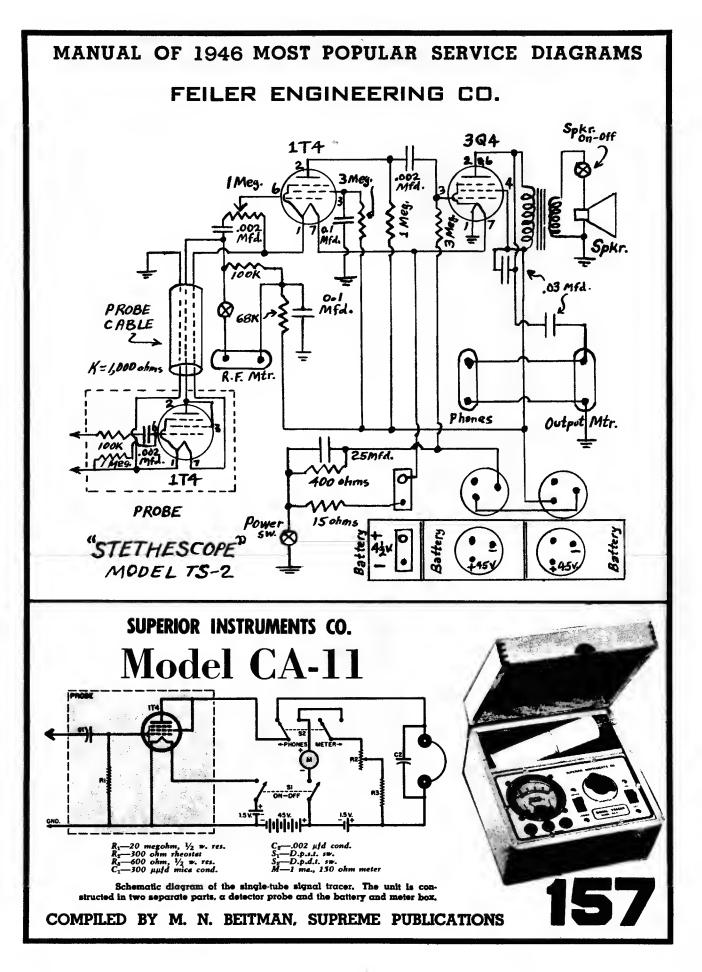
the generator must be connected to the metal frame of the gang condenser. Turn Adjust the generator to I.F. transformers until a ъ adjust the trimmers of the 1st and 2nd 1.F. transformers until generator to the ANT. section a . I MFD condenser. The ground lead from condenser to complete minimum capacity. maximum reading is noted on the output meter. Connect the hot lead from the gang condenser, through and STEP: gang ŝ FIRST 455 he e


SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1720 KC. The OSC, trimmer is located on the front of the chassis between the volume and tuning controls. Adjust this trimmer until the 1720 KC signal is tuned in.

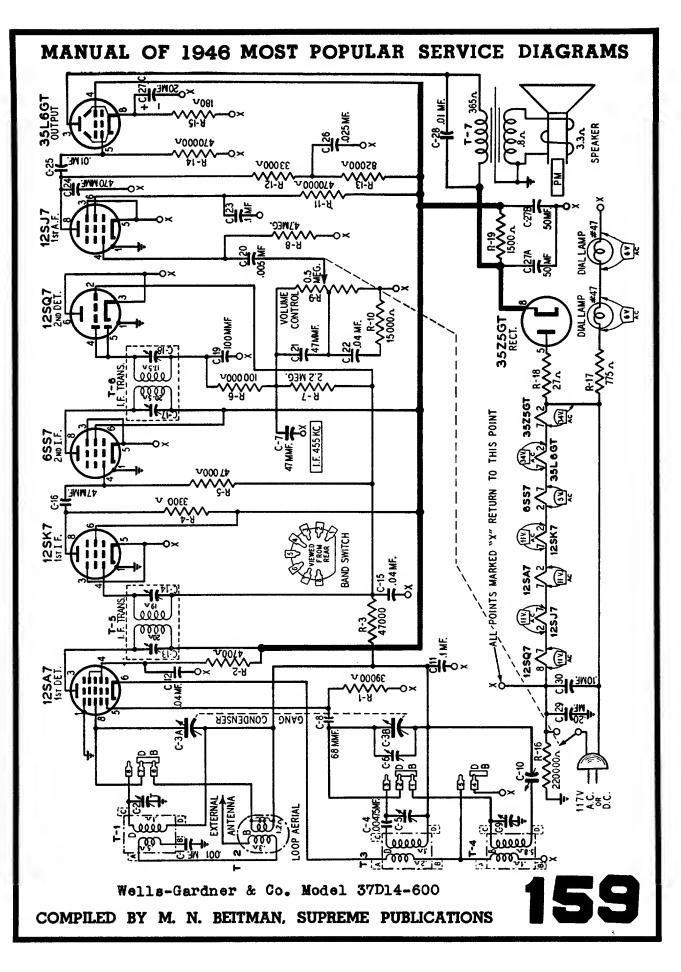

THIRD STEP: Remove the hot lead of the generotor from the ANT. section of the gang condenser. Connect this lead to the antenna lead wire that projects from the back of the loop antenna through a 200 MMFD condenser. Adjust the Signal Generator to 1400 KC. Rotate the tuning control until this signal is tuned in. The ANT. trimmer is locoted on the back of the loop antenna. Adjust this trimmer until a maximum reading is noted on the output meter. No further adjustment should be necessary, unless the set has been damaged, as the coils and condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.

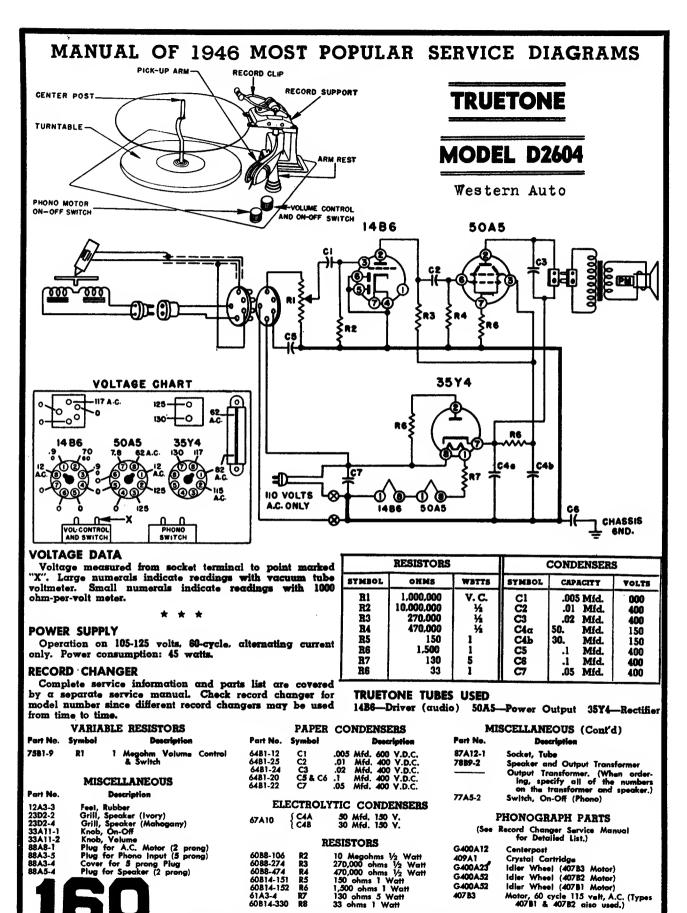
MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS WARWICK MANUFACTURING CORPORATION

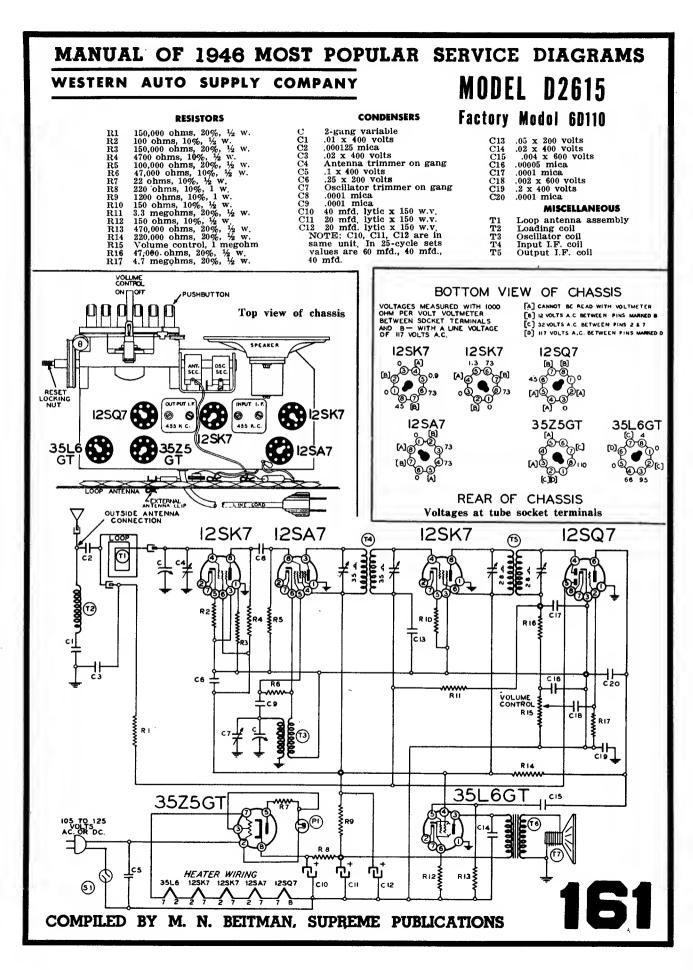


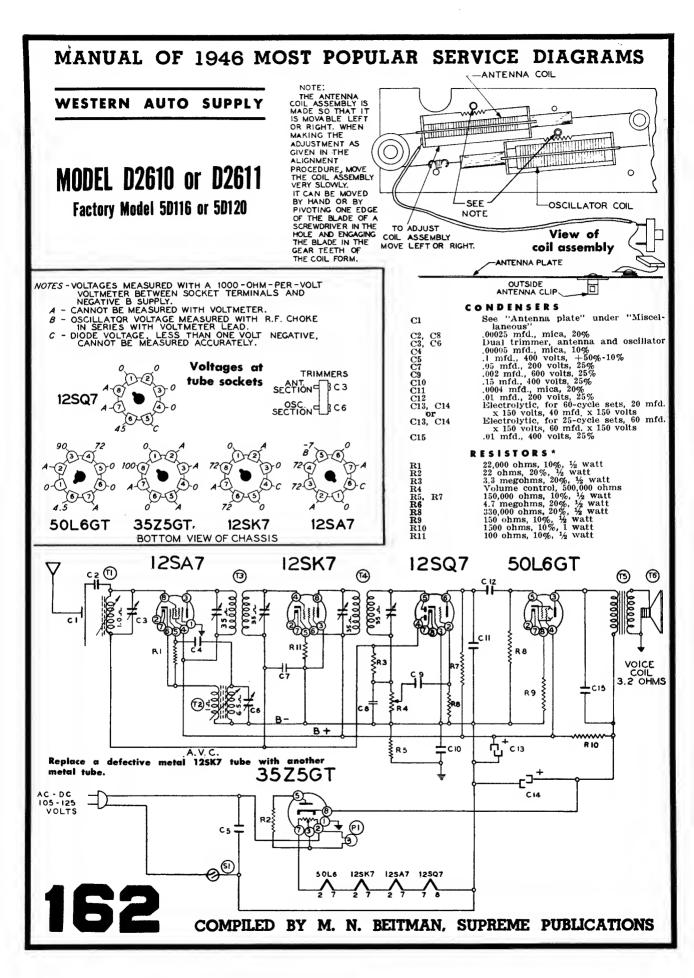


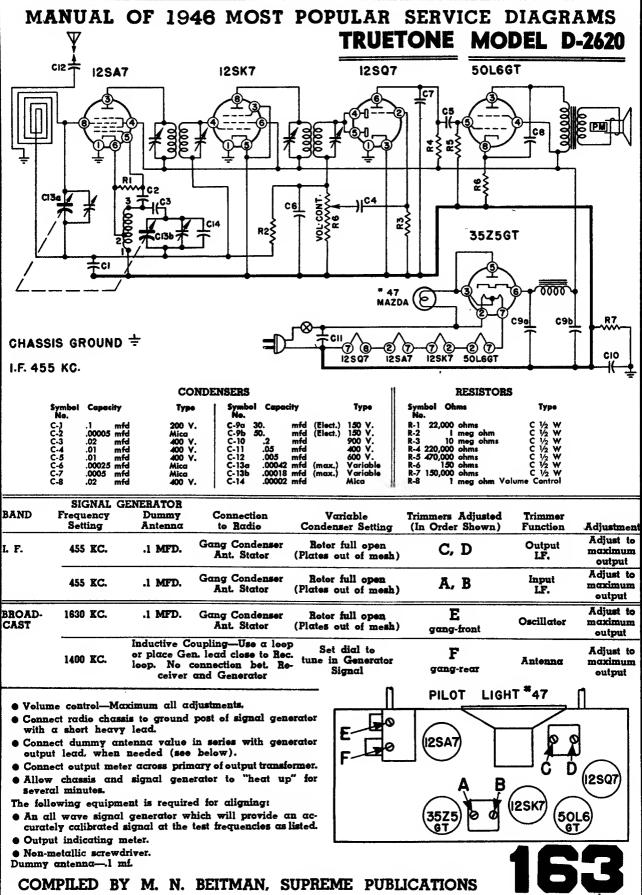
an output meter connected across the voice coil of the speaker, the output meter reading for 50 milliwatts is .4 volts using α signal which is modulated 30% at 400 c.p.s. Follow through the procedure as outlined below for proper alignment. With

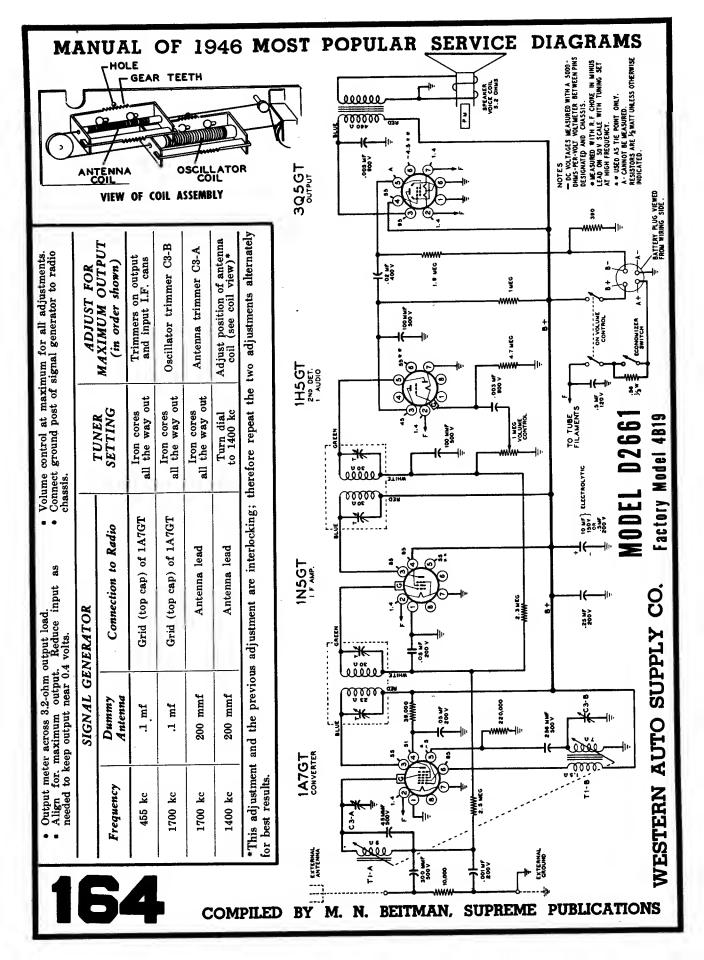

Connect the signal generator to the grid cap of the 1A7 GT Tube through α .1 MFD. Condenser. Connect the ground lead of the generator to the chassis. Adjust the signal generator to 455 K.C. and set the variable condenser of the receiver to minimum capacity (fully opened). With the volume control full on and minimum output from the signal generator adjust the two trimmers on top of the first and second I.F. transformers for maximum output. COMPILED BY M. N. BEITMAN, SUPREME

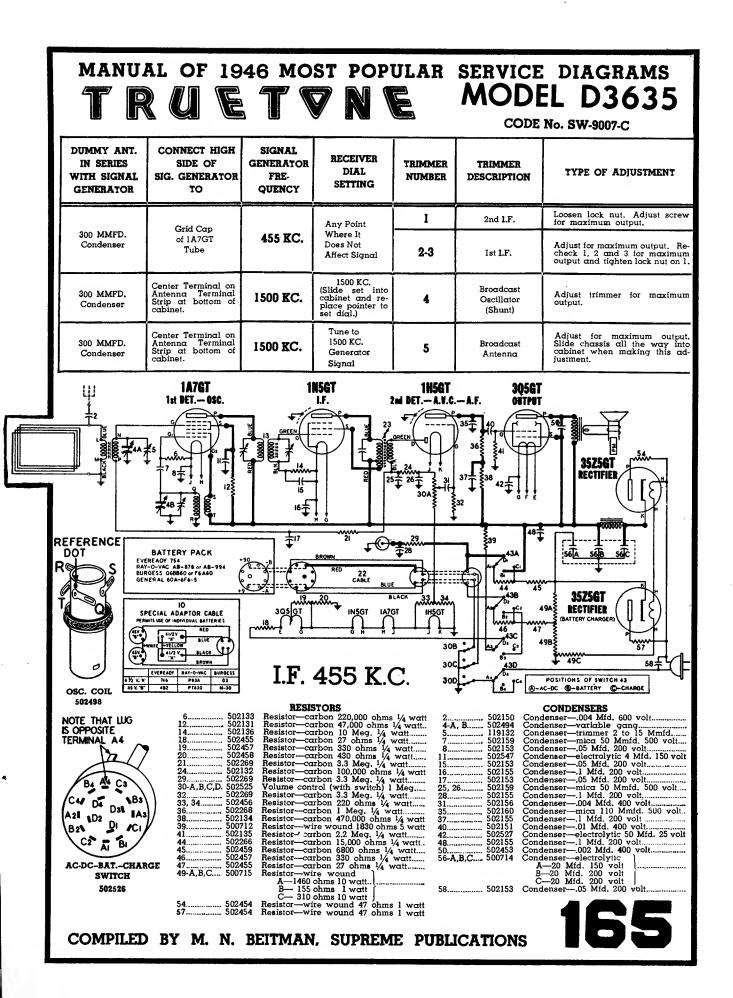

Now connect the signal generator to the antenna connection of the receiver through α .00025 condenser. Adjust the signal generator frequency to 1725 K. C. and set the variable condenser to minimum capacity (fully opened), and adjust the oscillator trimmer (CIB) for moximum output. Set signal generator to 1500 K. C. and tune receiver to signal. Adjust the antenna trimmer (CIA) on the variable condenser for maximum output. PUBLICATIONS

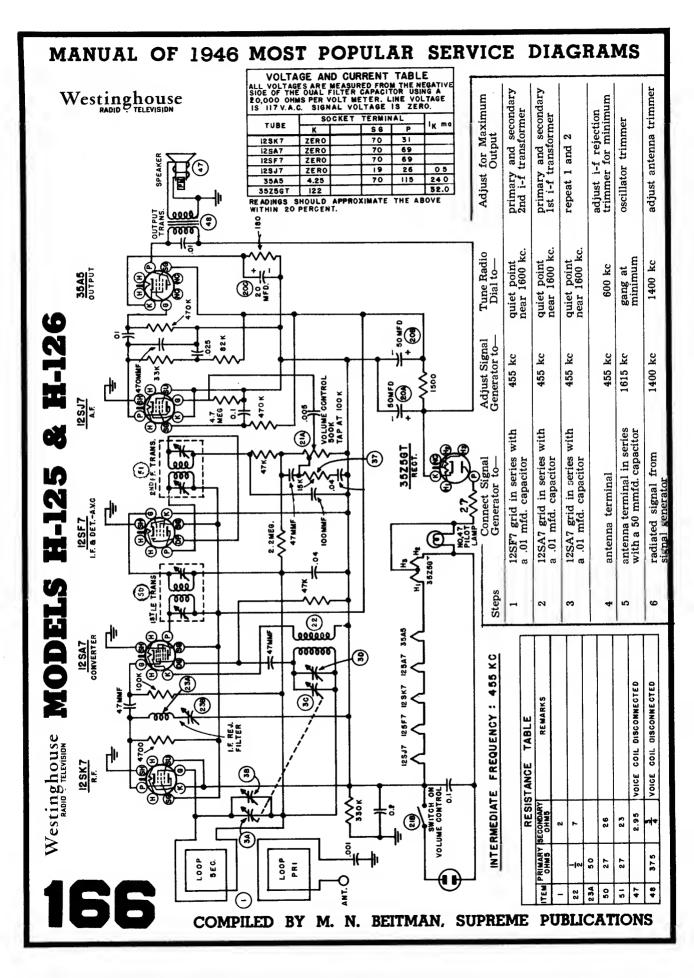

MANUAL OF	1946 MO				
Series 37014-600	HANK 5, WH 5, WH 5, WH 1, WH 6, WH 6, WH 1, WH 1	DAL POINTER DAL ACKGROUND INDEX LINE 600 KG NAGE NAGE NAGE NAGE NAGE NAGE NAGE NAG	CAPACITORS CAPACITORS OHNS WATTS 201 mf 200 mf 200 mf 200 mf WATTS 225 mm1 200 mf 200 mf 200 mf 0510 mf 8 100 00 05 225 mm1 0sc. fmass "gr. 7 mm1 853515 mf 8 100 00 05 5 100 00 05 Gant conference 853515 mf 9 Valume confroit and switch 955415 mf 10 mm 05 Gant conference and pullity	0 0	Bit of the state State
Ĩ. Ĩ.	C H.V.C. 12547 1270ELA 81A00AD UNK K PP-Deck Pau 0-Const Cut Co-Const Cut Cut Cut Cut Cut Cut Cut Cut Cut Cut	Screw at 10		I I I	Rampo D C (C2)
	8525GT 8525GT 86CT.	ill provide en e at test frequencie Non-Matallic Sc 200 mmf., and	ADJUST TRIMMERS TO MAXIMUM (See Trimmer (See Trimmer (See Trimmer Int L.F. (CI3) & (CI4 2ad L.F. (CI7) & (CI4	Ossilitator Range B (CB) Bao Nets A Bao Nets A CO Nets Retor Co Nets C Ossiliator Casta B (CB)	otilater R 06) At. Rangn
TES ge B (C9) trim- Range B (C6) Range B (C6) a diutted is be readjutted a background ragraph. and forth and of greatest In-	nourly is obtained. NOTE D—A "gimmick" capacity is used on the loop antenna in place of a timmer. This normally mequires na adjustment. However, if a new loop is instelled it may be necessary to adjust the "gimmick" by increasing or decreasing the num- ber of turns in the "gimmick." Complete the oscillator adjustment (C9) at 1400 KC, then adjust the "gimmick" at the same frequency.	JRE ator which w rated signal o ating Meter; maa1 mf.	A CONDENSER SETTING Tarn Robe to Fall (s Dees 2a.	Turn Rather to 1400 KC Index Line, See Norn B Arn Reter to Max. Turn Reter to Max. Turn Reter to Lian, See Nein D	Ropest above sites at (105 and 540 KC mill residuring the escillathe Range E Timmer (CG) cannes an further (mprovement af antput. Turn Rober to Aternal Aternal Aternal Aternal Aternal Aternal Aternal Aternal
NT NO Oscillator Ram Oscillator ing conder y need noi is on di is on di the peck	" capacity f a trimma However, necessary g or decre 'gimmick.") at 1400) at 1400 m frequen	PROCEDURE Signal Generator rately calibrate listed. Output Indicating driver. Dummy Antennat- ohm.	BAND SWITCH SETTING B Rangn	E Ranga E D B Ranga B Ranga B Ranga	11 readjuate Imprevenan D Range D Range
ALIGNMENT NOTE ALIGNMENT NOTE ar on side of chassis. Oscillator Range ar on side of chassis. Oscillator Ra sidiary trimmer on gang condenser factory and ordinarily need not be the field. NOTE B—Index line is on dial ip. See DIAL CALIBRATION paragr NOTE C—Turn the rotor back and just the trimmer until the peck of	Natry Is optimumed. NOTE D—A "gimmick" capacity is partener in place of a trimmer, if quires na adjustment. However, if instelled it may be necessary to instelled it may be necessary to instelled it may be necessary to instelletor adjustment (C9) at 1.00 KC cillator adjustment (C9) at 1.00 KC eillator adjustment (C9) at 1.00 KC		DUMMY Antenna .1 mi.	200 mmf. E SEE NOTE 200 mmf. 200 mmf.	400 CC ant 400 Ohm 400 Ohm
NOTE / NOTE / Mar on di auxiliary in the field NOTE NOTE NOTE Mote diust the		ALIGNMENT Check Dial Pointer position, see DIAL CALIBRA- TION paragraph. Volume Control-Maximum All Adjustments. Allow Chassis and Signal Generator te "Heat Up" for several minutes. The equipment in column at right is required for Aligning:	LTOR GROUND CDNNECTION Paint "X" 128K7- 128K7- 128K7- 128K7- 128K5 Press Na. 3	Polint "X" Paint "X" Polint "X"	atops at (405 and Trimmer (C8) ease Paint "X" Point "X"
		Check Dial Pointar position, TION paragraph. Volume Control—Maximum Allow Chassis and Signal Up" for several minutes. The equipment in column at Aligning:	SIGNAL GENERATOR ANTENNA CONNECTION CD Signal Grid P Connect at Stater of Stater	External Antonna Cily External Antonna Cily External	Ropest above External Antanna Cilp External Antanna Cilp
150		Check Dial Pointe TION paragraph. Volume Control— Allow Chassis an Up" for several The equipment In Aligning:	FREQUENCY SETTING 1.F. 455 KG	1400 KC 1400 KC 600 KC 1400 KC	RANGE D 16 MC 15 MC
130	COMPILED H	BY M. N. BEIT	MAN, SUPRI		






COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

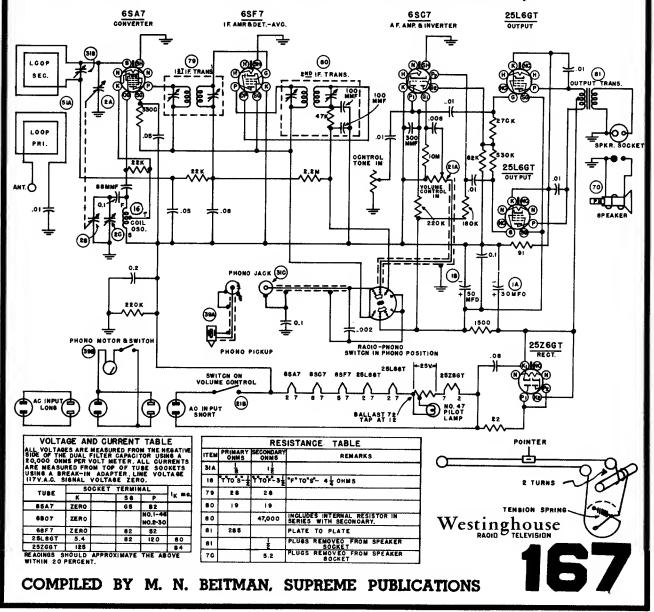


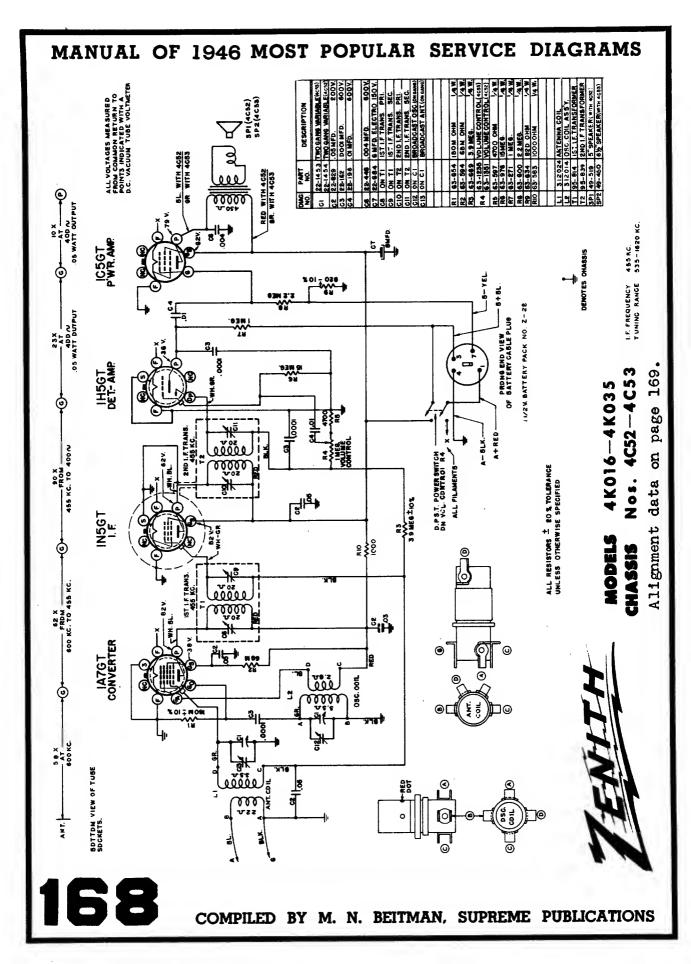


MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS Westinghouse Electric Corporation

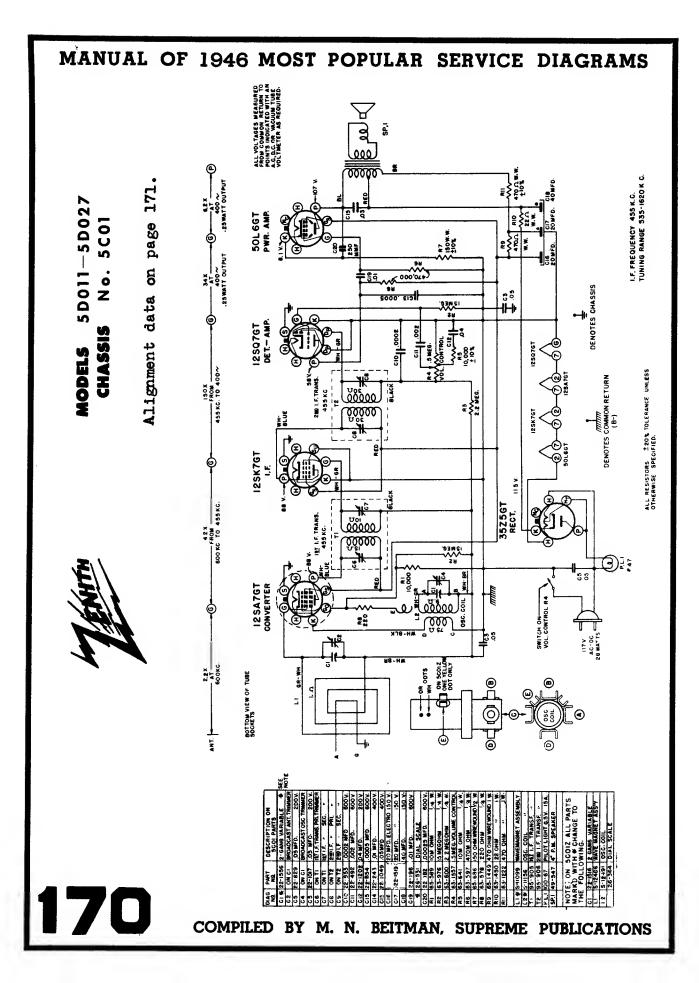
MODELS H-122 & H-130

Frequency Range:

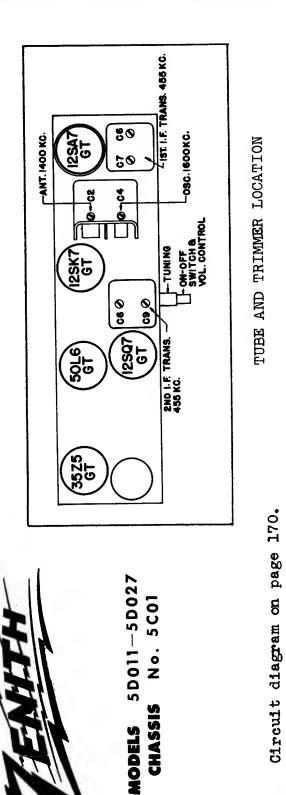

Standard Broadcast	kc
Intermediate Frequency455	kc


Power Output:

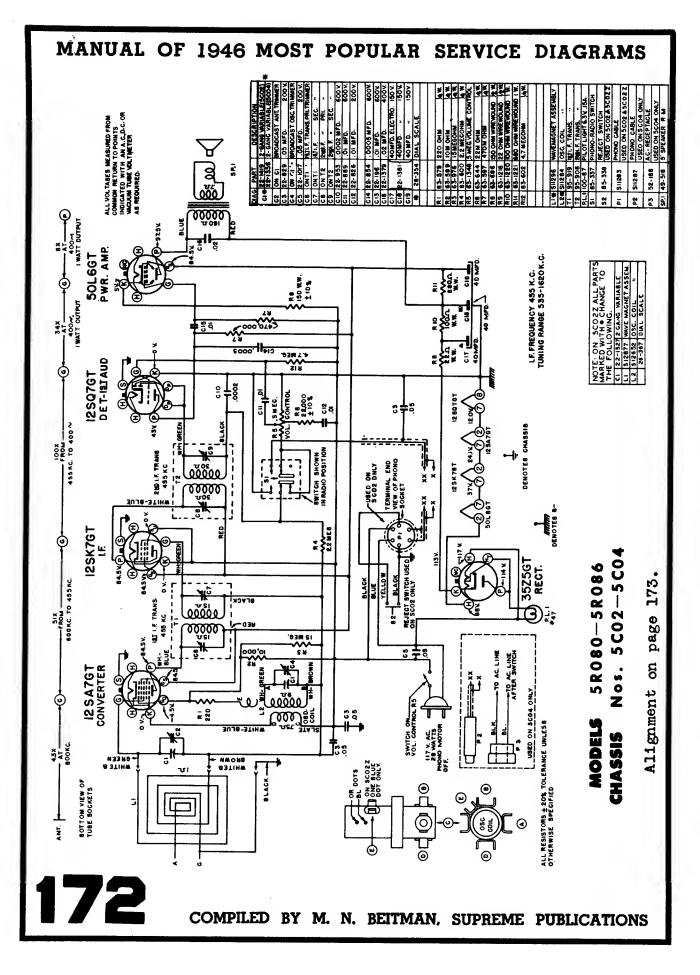
Loudspeaker:

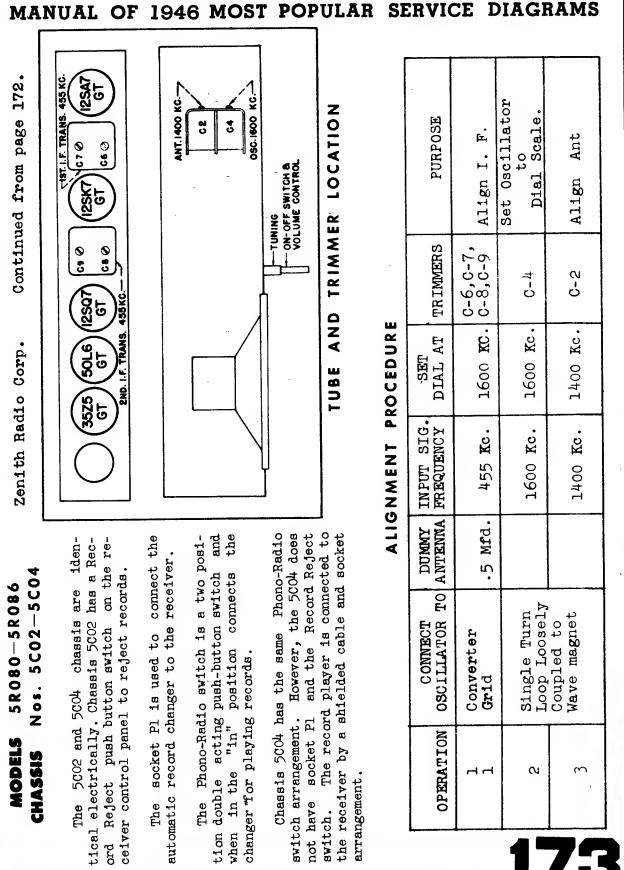

Undistorted (radio) 3 watts	Type65/8" dia. P.M. dynamic
Undistorted (phonograph)3.5 watts	Voice Coil Impedance
Maximum 5 watts	

When replacing tubes remove the snap-on fastners or screws which hold the rear coverloop assembly in place and carefully swing the loop around to give access to the chassis. Turn the tuning dial to 550 kc to prevent damage to the tuning capacitor plates when removing the 6SA7 tube. This will allow removal or insertion of the tubes without difficulty.



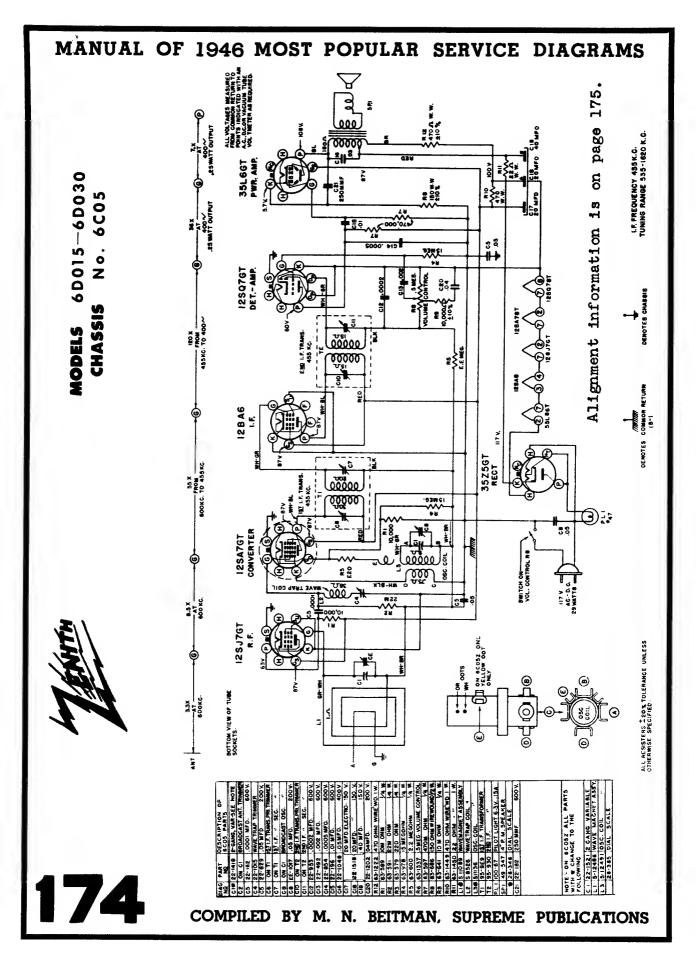
MAI	NUAL C	OF 1946 M	IOST	POPU	LĀR	SE	ERVIC	CE D	IAGRA	MS
Continued from page 168.	GROUND BLACK ANTENNA A7GT BLUE	CI3 ANT 1400 KC.		TUNING	ER LOCATION		PURPOSE	Align I. F.	Set Oscillator to Dial Scale.	Align antenna stage.
Continu		ST I.F TRANS. 455 KC.			DTRIMMER		TRIMMERS	c-8,c-9, c-10,c-11	C-12	C-13
adio Corp.	BATTERY PLUG		TRANS.	DFF SWITCH &	TUBE AND	PRO CED UR E	SET DIAL AT	600 Kc.	1600 K c.	1400 Kc.
Zenith Radio	ваттек ^{у р} ₇ IC5GT ₇ IH5GT		2ND. I.F. TRA 455 KC.				INPUT SIG. FREQUENCY	455 Kc	1600 Kc.	1400 Kc.
10 H	chassis	between control to out- it when counter s is the	objec- volume	se posi- reduced removed low end		ALIGNMENT	DUMMY ANTENNA	.5 Mfd.	200 mmfd.	200 mmfd.
4 K016-4 K035	ent of this	istorR5 volume ome audi nal inpu is in 'This	8	ter clockwi: R5 may be 00 ohms or it and the	grounded.		CONNECT OSCILLATOR TO	Converter Grid	Antenna and Ground	Antenna and Ground
5	The align conventiona	A 4700 ohm resist the low end of the vol and ground allows some put with normal signal the volume control is clockwise positions.	Guaralan Keminaer circult. If the audio output 1 tionably high (with the	ntrol n) : value m the	f the control		OPERATION	I	N	3
COM	PILED BY	3 등 2 3 7 8 M. N. BEITM		응급ქ럽 SUPREME	ម : PUB	LIC	ATION	s	16	9

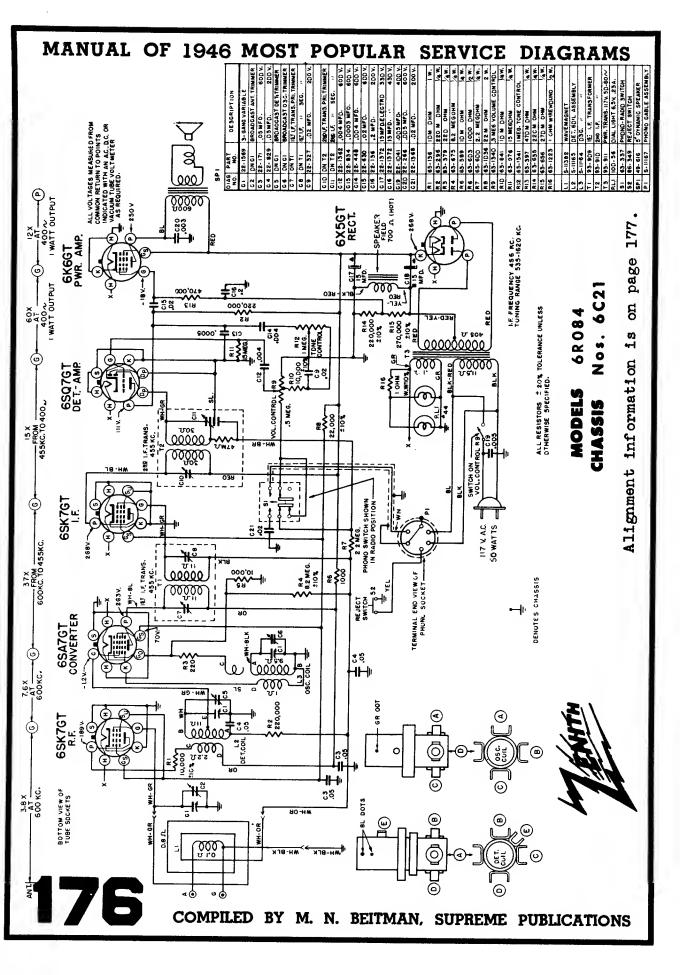

PURPOSE	Align I. F.	Set Oscillator to Dial Scale.	Align Antenna Stage
TRIMMERS	c-6,c-7, c-8,c-9	C-4	C-2
SET DIAL AT	. 600 Kc.	1600 Kc.	1400 Kc. C-2
INPUT SIG. FREQUENCY	455 K c.	1600 Kc.	1400 Kc.
DUMMY ANTENNA	.5 Mfd.	-	1
CONNECT OSCILLATOR TO	Converter Grid	One turn loop Coupled loosely to wave magnet	=
OPERATION	1	Q	æ
	AT TRIMMERS	DIAL AT TRIMMERS C-6,C-7, Align	DIAL AT TRIMMERS . 600 Kc. C-6,C-7, . 600 Kc. C-8,C-9 1600 Kc. C-4



-

MANUAL OF 1946 MOST POPULAR SERVICE DIAGRAMS

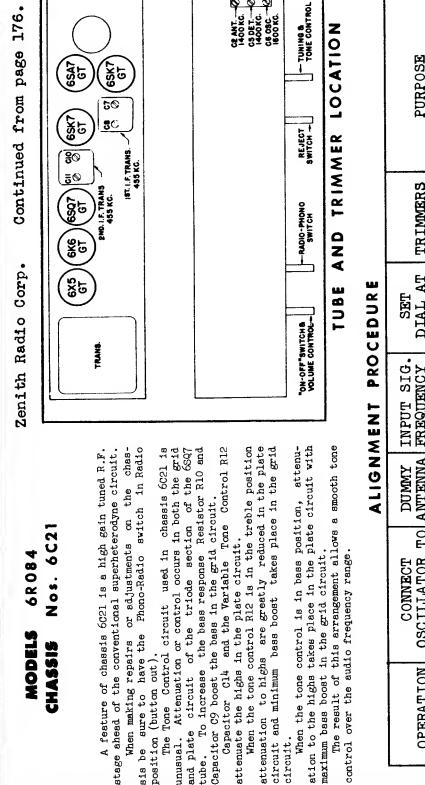

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS



COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

ONS

MA	NUAL OF 1946 M	IOST	POPU	LAR	SERV	ICE	DIAGF	AMS	5
led from page 174.	ANT. 1400 KG. CE CE CE CE CE CE CE CE CE CE	· ·	R10 and 12 and c on the 35L6 for	No. 206-547. Be sure to	PURPOSE	I.F. Alignment	Adjust Wave Trap to minimum.	Set Oscillator to Dial Scale.	Antenna Alignment
Continued	CSJ7 CSJ7 GCI0 GT GT GT CI2BAG - ON-OFF SWITCHR	BE AND TRIMMER L(field produced by current of the receiver therefore	filtering through resistor effective plate voltage	duplicate, Part No.	TRIMMERS	c-6,c-7, c-10,c-11	C-4	c-8	C-2
Radio Corp.	35L6 GT GT GT A55 KC.		ਸ	exact	DIAL	600 Kc.	600 Kc.	1600 Kc.	1400 Kc.
Zenith Ra		the magnet	lows Lows	T un	INPUT SIG.	455 Kc.	455 Kc.	1600 Kc.	1400 Kc.
0030 05	chassis 6C05 at should be man. An ex- lrawing will pped slightly + connection sapacitor C19 fier 35Z5 to connection of s B + to the rer. Current	" Da	transior f hum 1s systems	must be r transforr	ALIGN DUMMY TO ANTENNA	.5 Mfà.			
5 6 0015-600 5 515 No. 600	a of srvice ttic d her tal the B and (rectif wer (recdi	flowing through the upper windings of output transformer to the 35L6 produces magnetic field which is 180° out of phas	posite direction through the output is cancelled. Further reduction of acitors Cl7 and 18. This development in filtering	ed power output. NOTE: The output transformer he speaker code letter to the	CONNECT OSCILLATOR T	Converter Grid	Single Turn	Loosely Coupled to Wave Magnet	
MODELS CHASSIS	The filter circuit incorporate new feature well understood by the se amination of the schema show the output transform off center. This tap is from filter resistor R11 off the cathode of the the 35L6 plate. The lc the output transformer rest of the tubes in the	ring through t but transformer letic field whi	posite direction thro is cancelled. Furth acitors Cl7 and 18. This development	t B	OPERATION	Г	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	7
COM			SUPREM			ONS	1'	7	5



SERVICE DIAGRAMS MANUAL OF 1946 MOST POPULAR

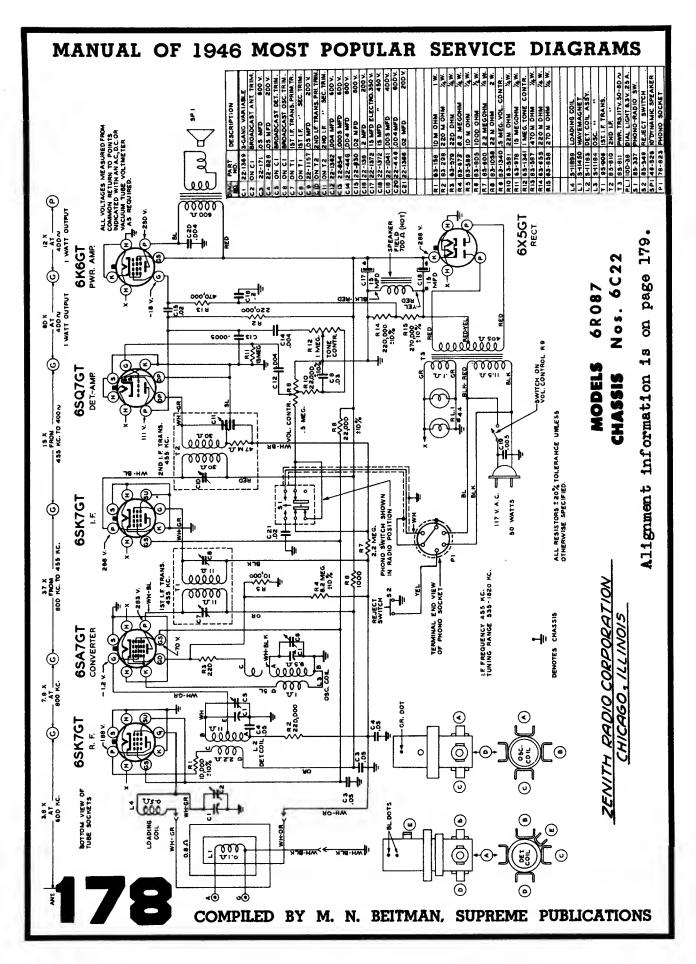
ſ

Т

CE ANT.

TUBE AND TRIMMER LOCATION		PURPOSE	Align I F	Set Oscillator to Dial Scale	Align det.	Align Ant.	
ND TRIM		TRIMMERS	600 Kc. C-7-, C-8, Align I	0-6	C-5	C-2	
TUBE A	CEDURE	SET DIAL AT	600 Kc .	1600 Kc C-6	1400 Kc. C-5	1400 Kc. C-2	
Ø	ALIGNMENT PROCEDURE	INPUT SIG. FREQUENCY	455 Kc.	1600 Kc	1400 Kc.	1400 Kc.	
e smooth ton	ALIGN	DUMMY ANTENNA	0,5 Mfd.	1	1	ł	
The result of this arrangement allows a smooth tone control over the audio frequency range.		CONNECT DUMMY INPUT SIG OSCILLATOR TO ANTENNA FREQUENCY	Converter Grid	One Turn Loop Coupled	Loosely to Wave Magnet		
The result of th rol over the sudi		OPERATION	Ч	Q	e	4	
cont			4	4 •	7		

SUPREME PUBLICATIONS BY M. N. BEITMAN, COMPILED

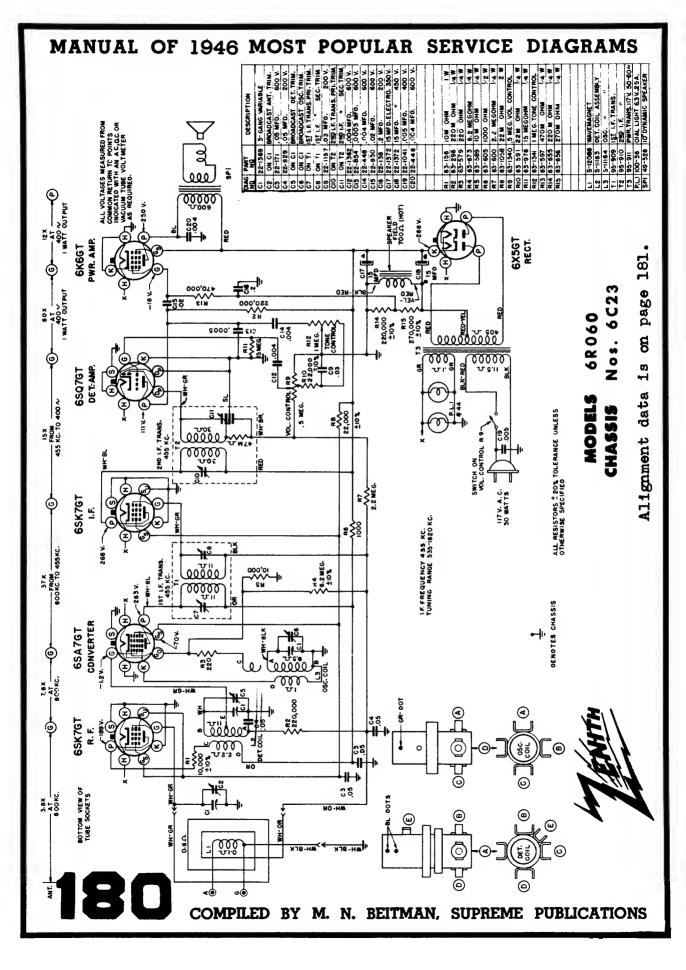

tube.

circuit.

sis be sure to have the

position (button out).

MODELS **CHASSIS**



1946 MOST POPULAR MANUAL OF SERVICE DIAGRAMS

-- TUNING B TONE CONTROL Continued from page 178. LOCATION Set Oscillator 6SA7 GT (6SK7 GT PURPOSE Scale Ē Ant. Align det. . Н 50 с 4 esk7 Dial 30 Align Align REJECT AND TRIMMER 30 IST. I.F. TRANS. 455 KC. <u>5</u>0 C-7-, C-8, C-10, C-11 END. I.F. TRANS 455 KC. TRIMMERS (6507) 61 0-0 C-5 C-2 986 978 Kc. Kc. ଟ୍ଟ୍ର Ř Kc DIAL AT **PROCEDURE** TUBE Zenith Radio Corp. S<u>뛈</u>S 1400 1400 1600 600 "ON-OFF" SWITCHE VOLUME CONTROL-TRANG SIG. FREQUENCY 1400 Kc. 1400 Kc. Ř 1600 Kc ALIGNMENT 455 TUPUT the chas-A feature of chassis 6022 is a high gain tuned R.F. stage ahead of the conventional superheterodyne circuit. sis be sure to have the Phono-Radio switch in Radio The Tone Control circuit used in chassis 6C22 is unusual. Attenuation or control occurs in both the grid Cl4 and the Variable Tone Control R12 When the tone control R12 is in the treble position attenuation to highs are greatly reduced in the plate When the tone control is in bass position, attenu-ation to the highs takes place in the plate circuit with circuit and minimum bass boost takes place in the grid The result of this arrangement allows a smooth tone of the triode section of the 6SQ7 tube. To increase the bass response Resistor R10 and ANTENNA TMMUQ Mfd. Capacitor C9 boost the bass in the grid circuit. ł 1 1 g ഹ 0 E attenuate the highs in the plate circuit. No. 6C22 When making repairs or adjustments One Turn Loop maximum bass boost in the grid circuit. control over the audio frequency range. 6R087 OSCILLATOR Wave Magnet CONNECT Loosely to Converter Coupled MODEL Grid CHASSIS position (button out). OPERATION and plate circuit Capacitor **H** S \mathfrak{S} 4

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

circuit.

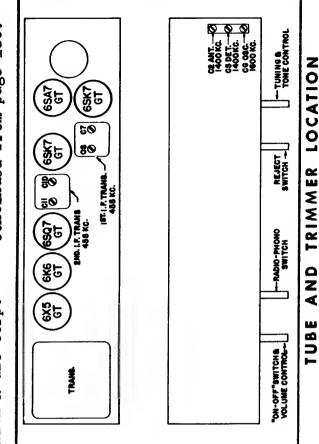
Nos. 6C23 6R060 MODELS **CHASSIS** A feature of chassis 6C23 is a high gain tuned R.F. stage ahead of the conventional superheterodyne circuit.

in both the grid and plate circuit of the triode To increase the bass response Resistor R10 and Capacitor C9 boost the The Tone Control circuit used in chassis 6023 is unusual. Attenuation or control occurs section of the 6SQ7 tube. bass in the grid circuit.

Capacitor Cl4 and the Variable Tone Control attenuate the highs in the plate circuit. RI2

When the tone control R12 is in the treble attenuation to highs are greatly reduced in the plate circuit and minimum bass boost takes place in the grid circuit. position

attenuation to the highs takes place in the plate When the tone control is in bass position, circuit with maximum bass boost in the grid circuit.

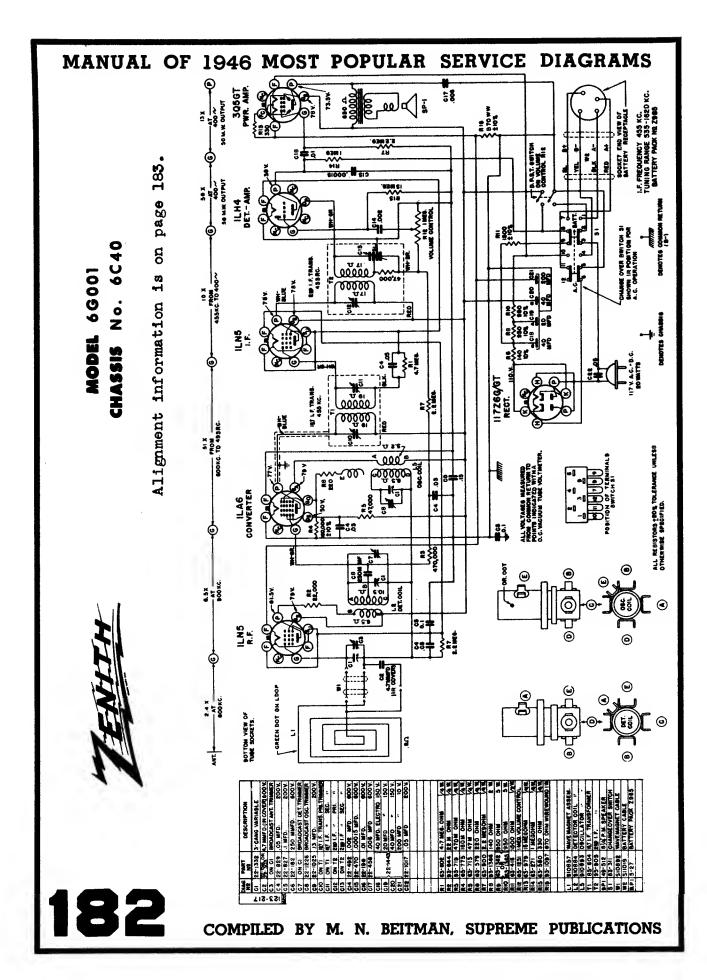

frequency allows tone control over the audio of this arrangement The result smooth range.

Ø

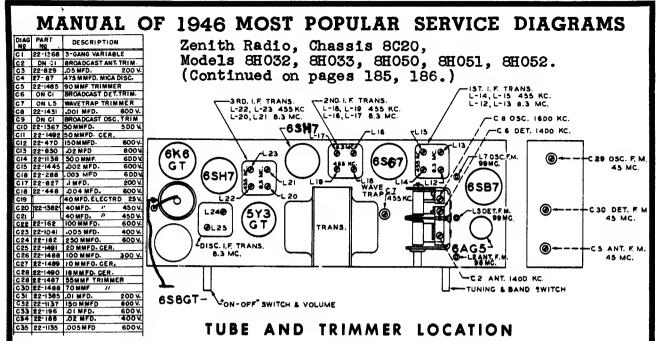
Zenith Radio Corp.

Continued from page 180.

MANUAL OF



1946 MOST


PROCEDURE ALIGNMENT

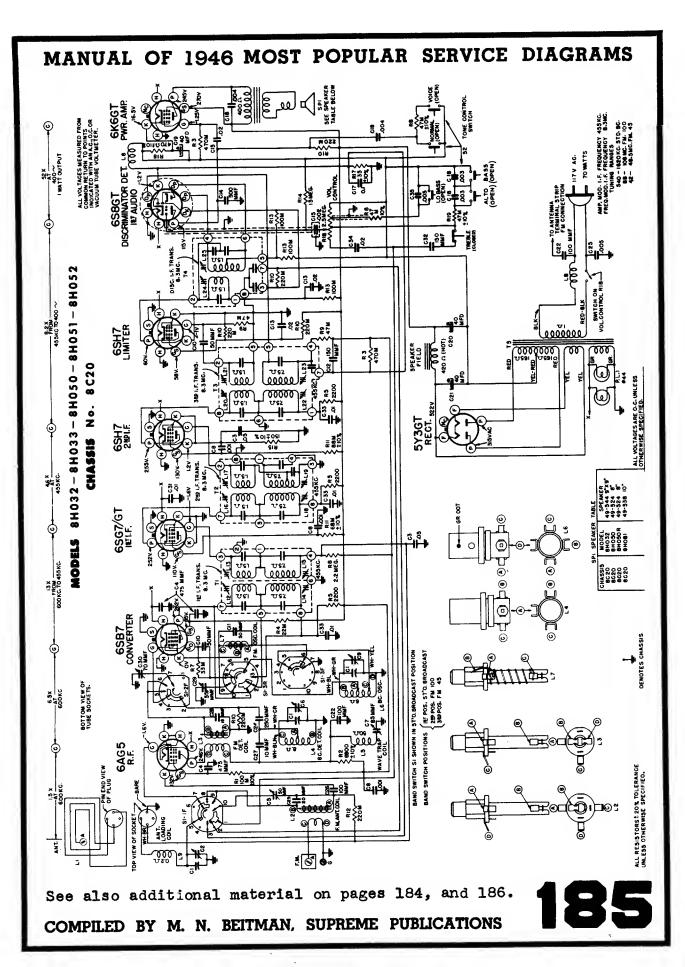
anmagan.	C ONNECT	DUMMY THO A NUMBER	INPUT SIG.	SET DIAT AM	ם מיזואוד מווו	
	.	UNINETTITY	TONEDSETUR		C NETITIVIT VIT	ACUAND'
г	Converter Grid	.5 Mfd.	455 Kc.	600 Kc.	C-7-,C-8, C-10,C-11	Align I. F.
	E					JOU DECILIATOF
N	Une lurn Loop Coupled	1	1600 Kc.	1600 Kc.	c -6	Dial Scale.
3	Loosely to Wave Magnet	8	1400 Kc.	1400 Kc. 1400 Kc. C-5	c -5	Align detector
						Align antenna
4		8	1400 Kc.	1400 Kc. 1400 Kc. C-2	C-2	stage

POPULAR SERVICE DIAGRAMS

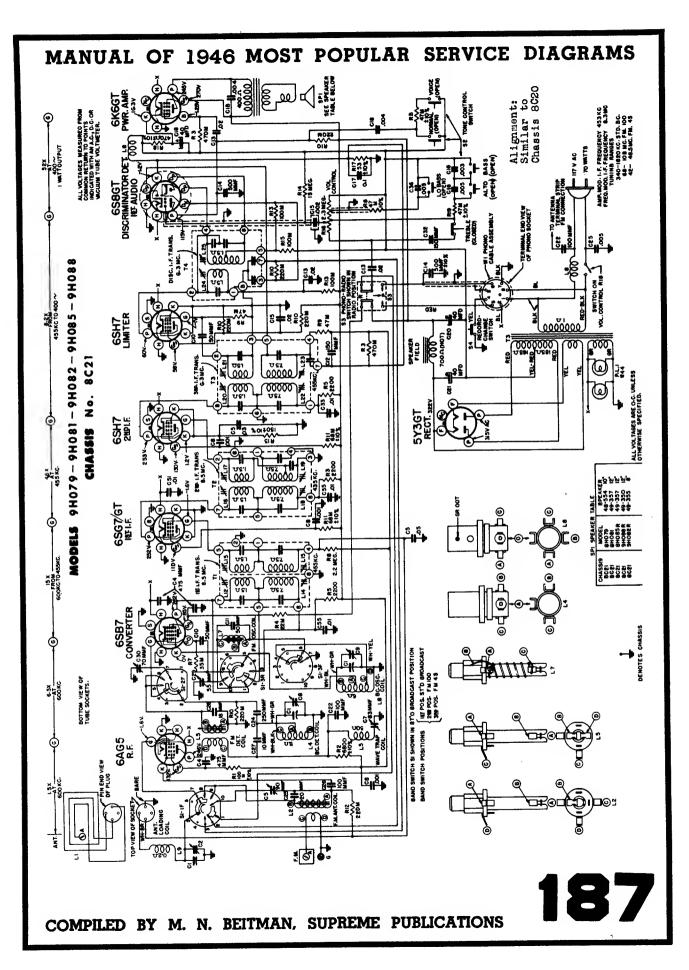
M	ANUAL OF 1946 MOST	POPULAR	t S	ERV	VICE	DIAGR	AMS
m page 182.	ITZ66G/GT TZ66G/GT TZ66G/GT TITZ67G/GT TITZ67G/GT	gnal output from the gene- es Sang. et. Set the signal genera- 1400 and adjust C7 (defec- et. Tune in a weak station	Purpose	IF alignment	Set oscillator to scale	Align Det.	Align Wave magnet
Continued from	CG COSC. I600 KG. -IST. I.F. TRANS. 435 KG. -IST. I.F. TRANS. 435 KG. F. TRANS. 435 KG. F. TRANS. 435 KG. *WITCH & VOL. CONTROL MER LOCATION Volce coll of the speaker of	Alvays keep the si stor leads from th op to the vavemagn d dial pointer to stall set in cabin eensitivity.	Trimers	C-10-11-12 13	C3	c7	c3
	CION CONTRACT IN TRANS. 455 KG. CION CION CION CION CION CION CION CION	the output meter. Always keep we the signal generator leads f sely couple this loop to the we signal generator and dial point operation and re-install set in cabinet for maximum sensitivity. EDURE	Set Dial To	600KC	1600KC	1400KC	14 00KC
to Corp.	AND T T mough a :1	tion on the output r t. Remove the sign tor. lossely couple Set the signal gens Oneck operation ar of the cabinet for PROCEDURE	Band	BC	BC	BC	BC
Zenith Radio	3059/6T 117266/6T TUBE A TUBE A S frame. Connect an output	545885 O	Input Signal Frequency	455KC	1600KC	1400KC	1400KC
		10, C11, C12 ar , otherwise ext across the le 1600 Kc. and s 1600 Kc. and s eadjust C3 thro eadjust C3 thro	Dumny Antenna	.1 MFD			
MODEL 6G001 ASSIS No. 6C40	an AC, DC or batte uit with a stage c is isolated fro ments must be mad from any stage c ments must be mad from any conventent int is the termina int is the termina int and to howl. connected a hum will cause audio howl. connected a sould be connected a sould be at condenser gans. I as yopen, re at connected a k for shorted or k for shorted or k for shorted or and the connect all the connect and the connect and an	the signal generator to 455Ko. and adjust C10, C11, C12 and C13 rator just high snough to get an initioation, otherwise excessive RF Alignment: Connect a two turn loop across the leads of tor and the dial pointer of the receiver to 1600 Kc. and adjust tor) and C3 (RF) to resonance. These trimmers are on the side near 1400 Kc. or use background noise and readjust C3 through th near 1400 Kc. or use background noise and readjust C3 through th	Connect Osc. To	Converter Grid	Two turns loosely coupled to Wave Magnet	Two turns loosely coupled to Wave Magnet	Two turns loosely coupled to Wave Magnet
MODE	The 6C40 chassis is ated superherodyne circ piritotation. The chassis correlt and all messure common negative point. common negative point. to reach this negative po to which C5 is connected chassis to any circuit mu any circuit becomes gro Microphonic tubes will ild6. The wavemagnet is through the hinges in the through the hinges in the the through the hinges in the the through the hinges in the the through the hinges in the through the hinges in the through the hinges in the through the hinges in the through the hinges in the the through the hinges in the through the hinges in the through the through the hinges in the th	the signal generator rator just high enough RF Alignment: tor and the dial poin tor) and C3 (RF) to a near 1400 Kc. or use	Opera- tion	1	Q	٤	4
CON			BLIC	ATIC	ONS	18	3

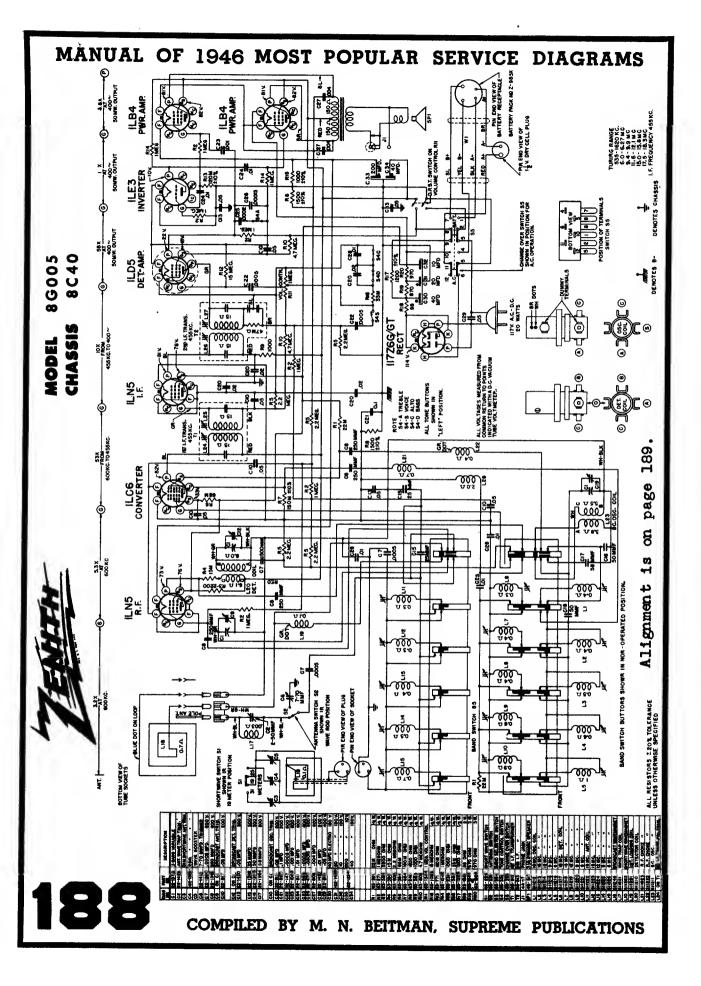
AM Alignment: The alignment of this chassis on the standard broadcast band is conventional. The alignment slugs in the IF transformers are threaded and screw

slugs in the IF transformers are threaded and screw into the coil forms. The slugs are slotted for a smallsize fiber screw driver. Do not press hard on the aligning tool (fiber screw driver) or the threads in the coil forms will strip and adjustment will be impossible.


FM RF Alignment: The same coil slug arrangement which tunes the 100 MC FM band also tunes the 45 MC band. However, on 45 MC the band switch connects trimmer condensers in parallel and padding wires in series with the 100 MC coils. The tuning slugs are attached to threaded shafts and the slugs are varied in the field of the coils by turning the shafts clockwise or counter-clockwise. After adjustments the shafts must be secured with a drop of speaker cement.

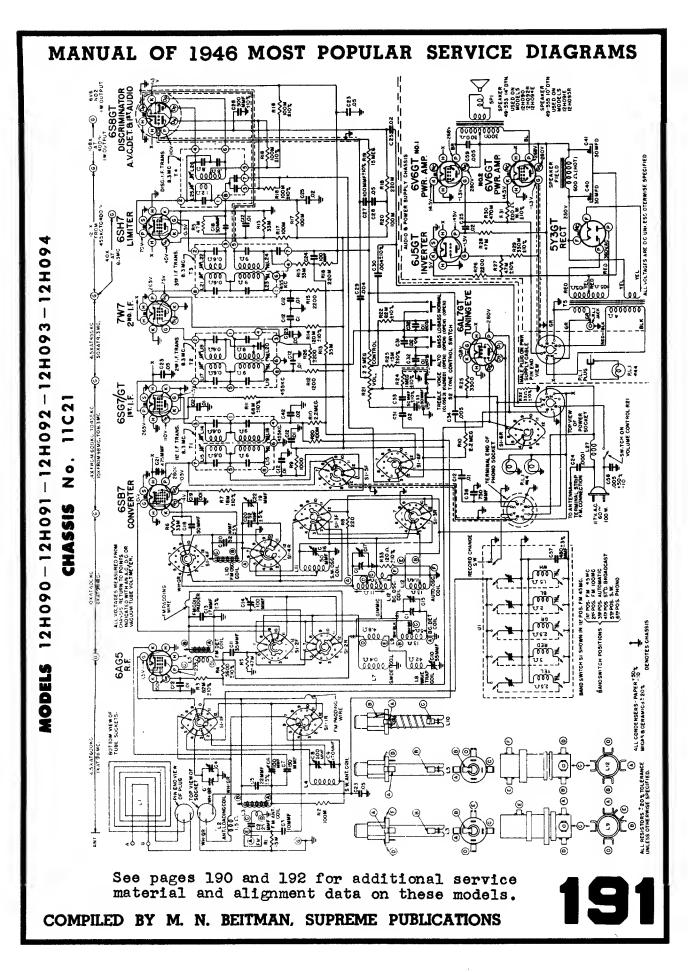
FM IF Alignment: The same type of tuning slugs for aligning the AM IF Amplifier are used for the FM I.F.'s. The second 8.3 Mc IF stage is overcoupled. When an overcoupled stage is aligned with an unmodulated signal, the stage must be loaded. A 300 ohm carbon resistor soldered across the secondary of the second IF transformer provides a satisfactory load for this circuit.


When aligning a loaded stage, it will be found that considerable signal from the generator will be required.


FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 6) use sufficient signal input to get a good positive and negative indication before setting the slug for zero reading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when this meter starts to go to the left (negative) of zero will give the same results. See table on page 186.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

MANUA	LC)F	194	6	МО				Pl	JL	I R	S	EI	RVI	CE	D	IA	G	R	AM	IS
VENT PROCEDURE MODELS 8H032-8H033-8H050-8H051-8H052 generator output should be kept just high enough to get an indication on the meter. a Tube Voltmeter pin 5 on discriminator transformer to chassis (half discriminator load.) a Tube Voltmeter pin 7 on discriminator transformer to chassis (full discriminator load.) a Tube Voltmeter pin 7 on discriminator transformer to chassis (full discriminator load.) a Tube Voltmeter for 7 on discriminator transformer to chassis (full discriminator load.) a Tube Voltmeter for 7 on discriminator transformer to chassis (full discriminator load.) a Tube Voltmeter for 5 million of the state of 1 million of the secondary bin (full 2 and 5 of 2nd, IF trans.).	Purpose	Align I.F. channel for maximum output	Adjust wavetrap for minimum output	Set oscillator to dial scale	Allem det. and ant. stages.	Align primary of dis	cimum reading	Adjust secondary of discrimin- ator for zero reading		Align Jrd IF transformer for maximum reading		Alian 2nd IF transformer for	maximum reading		Align 1st IF transformer for maximum reading		Set oscillator to dial scale	Align det. and ant. stages to	mum reading	Set oscillator to dial	Align detector & ant. stages for maximum reading
MODELS 8H032-8H033-8H050- d be kept just high enough to get an indicatio on discriminator transformer to chassis (half on discriminator transformer to chassis (full imiter grid (pin $^{\rm H}$) to chassis.	Adj. Trimmers	L-14,15,18,19 22 and 25	۵	60	C2 & C6	L24 coil slug	Primary discr.	LES COLL BLUG BEC OF disc	& L21	Prim.&sec. of 3rd IF trans.	L16 & L17	primary and sec. of 2nd IF	rmer	L12 & L13 Primary & Sec.	E	L7 Osc. Coll	B1ug 1.2 & 1.3 Det.	G.	aluca	000	C5 and C30
S 8H032 - 8H03 st high enough to g ator transformer to nator transformer to (pin 4) to chassis. across the secondar	Set Dial	600 Kc	600 Kc.	1600 KG.	1400 KG.											: 00	yo Mc.		98 Mc.	ን የተ	45 Mc.
Just Just Inato Matat d (pj d aci	Band	BC	BC	DR.	BC	W.	Ę.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 F		FM	45		EM F	NE C	3 T	FM	100	Ξų	EM 45
E MODELS 8 buld be kept just hi 5 on discriminator 7 on discriminator 7 limiter grid (pin 1stor soldered acros	Input Signal Frequency	455 Kc. Modulated	455 Kc. Modulated	1600 Kc. Modulated	1400 Kc. Modulated	8.3 Mc.	Unmodulated	0.2 Mc. Unmodulated		8.3 Mc. Unmodulated		8.3 Mc.	Unmodulated		8.3 Mc. Unmodulated	98 Mc.	Unmodulated	98 Mc.	Unmodulated	45 Mc. IInmodulated	45 Mc. Unmodulated
ROCEDUR • output sho tmeter pin thmeter pin thmeter 6SH7 carbon resi	Dummy Antenna	.05 Mfd.	.05 Mfd.				.05 Mfd.	.05 Mfd.		.05 Mfd.			.05 Mfd.		.05 Mfd.	270	BIIIIO	270	ohma	270 chma	270 ohma
ALIGNMENT PROCEDUR The signal generator output sho (a) Vacuum Tube Voltmeter pin (b) Vacuum Tube Voltmeter pin (c) Vacuum Tube Voltmeter 6SH7 (d) 300 ohm ½ watt carbon resi	Connect Oscillator to	Pin 8 on Converter Tube 6SB7 Socket	Pin 1 on R.F.tube 6AG5 socket	2 turns loosely culd to wavemagnet	2 turns loosely cpld. to wavemagnet	Pin 4(grid)on 6SH7	limiter socket	Pin 4(grid)on 05H(limiter socket	Pin 4 (grid) on	6SH7 2nd IF tube socket		FIN 4 (Eria) on 6SG7 lst IF tube		Pin 8(grid)on	6SB7 converter tube socket	Antenna Post (Re-	move line ant.)	Antenna Post (Re-	move line ant.)	Antenna Post (Re- move 11ne ant.)	
186	opera- tion		∾ 0	PILE		Y	W 5(a)	N 6(b)	. E	(°) / L TIE	MA	N,	S 8(c)(d)	JPR	(@)(0)6 EME	P		LIC	A 11(c)	1 0(0)	13(c)



TO THE SERVICE MAN:						ANTENN ANTENED	ANTENIA THAREAS ANTENIA THAREAS ANEMED FROM BACK OF CHASSIS) EANT WWE TRAP (F M.)	M
es a hi tional tuning	tune sterc 49,		Me BOOTER CA-0 0-0				LII BW AAF 176 AG 118 BW AAF 118 BW AAF 118 AM	ANUAL
The audio amplifier used in chass features phase inversion and push-pul output.	*1 -1	1172BG/GT		PHD IF TAANS.			LIA 3W ANT 3.4MC. LIS 3W ANT 6.1M LIB 3M OCT 1.2 3M OCT	OF
If removal of the chassis from the ever becomes necessary this should be d care.	rom the cabinet 1d be done with		(F.)				HBMC BAMCTT AW DCTT	194
The alignment of chassis 8C40 is tional. However, care must be exerci- metric adjustments and the alignment m	of chassis 8C40 is conven- care must be exercised when and the slitement procedure	0	`					46 I
must be followed exactly. Set the chassis a metal plate approximately the same dis the battery pack is from the bottom of the	Set the chassis over the same distance the bottom of the chas-		VOLUME CONTROL				LL NK GRC LL NK GRC LL NK GRC LL NK GRC A NKC A	MOSI
<pre>gis when it is in the cabinet. This will introduce the approximate amount to the field of the DT and carillatory</pre>	This procedure amount of metal		TUBE A	AND TR	TRIMMER	2	CATION CATION	PC
when the chassis is in the cab-	81100	AL	LIGNMENT	۵.	ROCEDUR	RE		OP
inet. A signal generator of reasonable accuracy and good at-	TION OSCILLATOR	TO ANTENNA F	INPUT SIG.	BAND DIA	BET TR	TRIMURS	PURPOSE	UL
tenuation must be used. An out- put meter (AC) of the copper		.1 mfd.	455 Kc.	BC 600	Kc.	L-24,25,		AF
type rolta in	Coupled Loosely	Loop Loosely to	1400 Kc.	1	KC.	C-12	Detec	8 8
steps is necessary to get accur-	4 Broadcast h		1400 Kc.		Kc.	6	Alignment of B.C. Wave- magnet	SEF
H	5*		6.1 Mc. 4	49 Met. 6.1	Mc.	L-5, L-10, L-15		RVI
metallic type, especially when making adjustments at the higher	3 Feet of	wire	WC	Met.	WC	L-14 L-2, L-8, L-3, L-8,	Alignment of S.W.	CE
Traduction of the Dodt of Comments	B* Approx 1 1 B* Extended We	Vaverod	11.0 Mc. 2	22 Met. 11.0 19 Met. 15.2	Mc .	L-13 L-2, L-7, L-12	> Antenne, Detector and Oscillator	DI
ding other in ther	•6		17.8 Mc.]	16 Met. 17.8	Mc.	L-1, L-0, L-11		A
00	10 Collapsed		15.2 Mc. 1 11.8 Mc. 2 9.6 Mc. 3	Met. Met.	000	<u>c-5, c-6</u> <u>c-4</u> c-3	ignment fagnet	GRA
CHASSIS 8C40	13 The Receiving Normal 13 PM Interference is Ex	fving Normal T ference is Expe	ormal Transmissions On The is Experienced Adjust Wave	ust Wave 1	19, 31, 25, 1 Trap Trimmer	25, 19 or mmer C-2	· 16 Meter Bands, 1f for Minimum	MS
	#Note: Rock Tunin	ig Condenser	When Making	Alignment	Under C	peration	Rock Tuning Condenser When Making Alignment Under Operations 5,6,7,8 and 9	

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

MANU	JAL	OF	1946	MOS	г рор	ULAF	R SERV	ICE	DIAGRAMS
2H093 - 12H094			ن ن ن ک	LE TRANS. LE TRANS. Le 16 459 KC. C22 050 FM	CIADET.FM	COGANTEN 45.M.C.	Rt.B 65-760 IOOM L4 W Rt0 55-760 100.00 M M L4 W Rt0 55-795 100.00 M M L4 W Rt0 55-795 100.00 M M L4 W Rt2 55-505 100.00 M M L4 W Rt2 55-505 15.80 M M L4 W Rt3 55-905 15.80 M M L4 W	R21655-564 67 M OHM /4 W R2165-564 67 M OHM /4 W R2665-187 47 M OHM /4 W R2655-567 750 M OHM /4 W R2655-567 750 M OHM /4 W R3055-567 470 OHM WREWOUNDW	
1-12H092-1 No. 11C21	O	LOCA			<u>الم</u>	L-BAND SWITCH	C5I 227127 / 22.4/20 400V C32 222125 D/MPD 400V C33 222125 D/MPD 400V C34 222195 D/MPD 400 400V C34 222195 D/03 MPD 400 400V C35 222 25 150 MMPD 91/UE1 400V C38 22210 0.003 MPD 91/UE1 400V C19 222100 0.003 MPD 0.000 MPD 0.000 V	A OF	R 5: 43: 45: 45: 45: 45: 45: 45: 45: 45: 45: 45
12H090 – 12H091 Chassis		TRIMMER	4	Contraction of the second states	1	L SWITCH	Olds PART OESGRIPTION No 27:195 5-040C VARIALLE C1 27:195 5-040C VARIALLE C2 27:195 5-040C VARIALLE C2 27:195 5-040C VARIALLE C3 27:195 5-040C VARIALLE C4 27:195 5-040C VARIALLE C5 27:195 5-040C VARIALLE C4 27:195 5-040C VARIALLE C5 27:195 5-040C VARIALLE C5 22:195 22:040C GR C6 22:195 22:040C GR C7 22:195 22:040C GR C7 22:195 22:040C GR	C 28 22-1407 5.W. ANT. TRIM C 20 22-1407 5.W. ANT. TRIM C 10 22-150 5.W. ANT. TRIM VANC 72 22-150 5.M. C 28 500V. C 28 22-150 1.M. MFC 28 500V.	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MODELS		plificat 3 on the	onal. The align- aded and screw into a small size fiber fgning tool (fiber rms will <u>strip</u> and	arrangement which J band. However, on heers in parallel	afts clockwise or afts clockwise or afts must be secur- ag slugs for align- A I.F.'s. Observe	3. The second 8.3 gives a wide band led stage is align- be loaded. A 500	idary of the second I for this circuit. Ice the distribut- be found that con- equined, and that	DE REMOVED AFTER ave sufficient out- the load resistor, signal fed into the	the secondary of the) use sufficient signal ve indication before center zero indicating t, but is not absolutely on-zero center meter, or carts to go to the left ssults.
LIME.	(Continued on pages 19 The llC21 chassis incorporates a superhe	with three stages of IF, and one stage of RF ampl all hands. AM Alignment: The alignment of this chassis	wave and standard broadcast band is conventional. The ment slugs in the IF transformers are threaded and scr the coil forma. The slugs are slotted for small siz screw driver. Do not press hard on the aligning tool screw driver) or the threads in the coil forms will st adiutement will be drongerbla	FM RF Alignment: The same coil slug arrutunes the 100 MC FM band also tunes the 45 MC band 45 MC the band switch connects trimmer condensers and pedding wires in series with the 100 MC coils also are streaded to threaded the threaded to the constant series are series at the constant series and the constant series are series at the constant series are series at the constant series are series at the constant series at the constant series at the constant series are series at the constant series at	In the field of the colls by turning the shaft counter-clockwise. After adjustments the shaft ed with a drop of speaker cement. FM IF Alignment: The same type of tuning ing the AM IF Amplifier are used for the FM	the same precautions when making adjustments. The second 8.3 Mc IF stage is overcoupled. Overcoupling gives a wide band pass with good sensitivity. When an overcoupled stage is aligned with an unmodulated signal, the stage must be loaded. A 500	ofm carbon resistor soldered across the secondary of the second IF transformer provides a satisfactory load for this circuit. The resistor leads must be kept short to reduce the distribut- ed capacity of the circuit. When sligning a loaded stage, it will be found that con- siderable signal from the generator will be required, and that the will the required action.	ALIGNMENT. THE PROPERTY AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	preceding stage. FM Discriminator Alignment: When the secondary discriminator is aligned (operation 9) use sufficient input to get a good positive and negative indication setting the slug for zero reading. A center zero in meter is recommended for this adjustment, but is not al necessary. Reversing the leads of a non-zero center r observing closely when this meter starts to go to t (negative) of zero will give the same results.

	M	١N	U	A	L	C)E	F	19	94	16	1	M	0	S	T	F	2	DI	PU	IL	. A	R		S	EI	RV	10	CF	3	D	IA(
Durnee	Align I.F. channel for	Adjust wavetrap to	minimum	Set oscillator to dial	BCGLE	Alizh det end ant stages.	lator to d	scale		Align ant. stage	Allgn ant. stage Repeat	Alian primery of disorimin-	ator for maximum reading	Adjust secondary of discr.	for zero reading		Align 3rd IF transformer	for maximum reading		Align 2nd IF transformer	LOT DEXLIDED FEBULIDE		Align 180 LF transformer for merimum reading	Set oscillator to	dial soale	Align det. and Ant.	stage to maximum	reauing Set contileter to		Align detector and	ant. stages for	BUIDBA. T INNUTYPAT
Ad t. Trtmers	L15,16,19,20,23	1	G10	t	JTD	CI5 & CH		c16	(63	ą	L25 ooil slug	Dary	L26 0011 Blug seo.	of disor.		Beo. of 3rd IF	tranaformer		Beo. of 2nd IF		יין אבריון פיין אבריון	transformer	LIO Osc. coil	Slug	rg .	and RF ooil	660 887018	1	C14 and C6		
Set Dial To	AND VO	Press any but-	ton on Auto.		TOUU NC.	1400 Kc.		11.7 Mo.		11.7 Mo.	0 7 MO													98 Mo.		98 Mo.		TE NO		45 Mo.		
Bend	Č,	3	Aut.		2	BC		SW	i	MS	MS	E	£	æ.	45		E.	4 2	i	E E	7	£	⁴ 5	Z	100	FM	100	M	5	W.	₽ 10	
Input Signal Frequenov	455 Kc. Modulated	-		1600 Ko.	MOGULATE	Modulated	11.7 Mo.	Modulated	.ow 7.11	Modulated	Y. M. Modulated	8.3 Mo.	Unmodulated	8.3 Mo.	<u>Unmodulated</u>		8.3 Mo.	Unmodu lated	:	8.5 Mc.	Number of the second	R MO	Unmodulated	98 Mo.	Unmodulated	98 Mo.	Unmodulated	45 MO	Unmodulated	45 Mo.	Unmodulated	
Antenna	OF MPA		.05 Mfd.				001	ohme	00 7	Bindo	opta and a		.05 Mfd.		.05 Mfd.			.07 MFd.		OS MPA			.05 Mfd.	270	ohma	270	emulo	270	emido	270	ohme	
Connect Oscillator to	Pin 8 on Converter Tube 6587 acoket	Pin 1 on R.F. tube	bAG socket		2 turns localy			move line ant.)	Antenna Post (Re-	٦υ	Antenna rost we-	Pin 4 grid on 58H7		Pin 4 grid on 68H7	limiter socket	Pin 4 (grid) on	TWT 2nd IF tube		Pin 4 (grid) on	oSG/ LBt LF tube	Din Blowid an Kapy	Fill Orbitation Job 100	Booket	Antenna Post (re-	e ant.)	(Re-	move line ant.)	Antenne Post (re-	-13	Antenna Post (re-	move line ant.)	
Opera- tion	-		N	H	2	-4		5	,	0	7		8 (a)		(q) 6			(0) OT		(e) 11		(0) 01	g g		13 (0)		1. 1.1	70/ 17	15 (0)		(0) 91	1121 27

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Vacuum Tube Voltmeter 65H7 limiter grid (pin 4 to ohassis). 300 ohm ½ watt carbon resistor soldered across the secondary L18 (pin 2 and 3 of 2nd LF trans.). The leads to the resistor must be as short as possible and the resistor removed before operation 13 is started.